Needle shape quality control by shadowgraphic image processing

We propose a needle-shape quality-control method. To this end, we have devised a new acquisition system that combines a camera and a backlight. Needle measurements are carried out at a micrometric scale using shadowgraphic image processing. Our method not only distinguishes good needles from bad ones, but also allows classifying flawed needles into various categories of defects. This classification is important because some categories of defects can affect the entire production, whereas others do not. The results of our needle-shape quality-control method are validated using real samples directly off the manufacturing line. Needles are correctly classified at >97%, and accurate measurements on global shape characteristics such as straightness and sharpness are obtained.