An immersed boundary method for flows with dense particle suspensions

[1]  Mohd Hazmil Abdol-Azis,et al.  An immersed boundary method for incompressible flows in complex domains , 2019, J. Comput. Phys..

[2]  Fabian Denner,et al.  Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries , 2017, J. Comput. Phys..

[3]  Jochen Fröhlich,et al.  A non-iterative immersed boundary method for spherical particles of arbitrary density ratio , 2017, J. Comput. Phys..

[4]  H. Udaykumar,et al.  Comparison of sharp and smoothed interface methods for simulation of particulate flows II: Inertial and added mass effects , 2017 .

[5]  H. S. Udaykumar,et al.  Comparison of sharp and smoothed interface methods for simulation of particulate flows I: Fluid structure interaction for moderate reynolds numbers , 2016 .

[6]  Giuseppe Pascazio,et al.  A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness , 2016, J. Comput. Phys..

[7]  Edward Biegert,et al.  A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds , 2016, J. Comput. Phys..

[8]  Xiaomin Pan,et al.  A pre-conditioned implicit direct forcing based immersed boundary method for incompressible viscous flows , 2016, J. Comput. Phys..

[9]  Jochen Fröhlich,et al.  A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method , 2015, J. Comput. Phys..

[10]  Fabian Denner,et al.  Comparative study of mass-conserving interface capturing frameworks for two-phase flows with surface tension , 2014 .

[11]  F. Sotiropoulos,et al.  Immersed boundary methods for simulating fluid-structure interaction , 2014 .

[12]  Ng Niels Deen,et al.  Direct numerical simulation of flow and heat transfer in dense fluid-particle systems , 2012 .

[13]  J. Fröhlich,et al.  Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids , 2012, Journal of Fluid Mechanics.

[14]  Frederick Stern,et al.  A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions , 2012, J. Comput. Phys..

[15]  Jochen Fröhlich,et al.  An improved immersed boundary method with direct forcing for the simulation of particle laden flows , 2012, J. Comput. Phys..

[16]  Wim-Paul Breugem,et al.  A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows , 2012, J. Comput. Phys..

[17]  John S. Shrimpton,et al.  On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows , 2012 .

[18]  Alfredo Pinelli,et al.  Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers , 2010, J. Comput. Phys..

[19]  Wolfgang A. Wall,et al.  Vector Extrapolation for Strong Coupling Fluid-Structure Interaction Solvers , 2009 .

[20]  Fotis Sotiropoulos,et al.  Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies , 2008, J. Comput. Phys..

[21]  Markus Uhlmann,et al.  Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime , 2008, 1108.6233.

[22]  Wing Kam Liu,et al.  The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members , 2008 .

[23]  Jianren Fan,et al.  Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles , 2008 .

[24]  Elias Balaras,et al.  A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies , 2008 .

[25]  Zhaosheng Yu,et al.  A direct-forcing fictitious domain method for particulate flows , 2007, J. Comput. Phys..

[26]  Tim Colonius,et al.  The immersed boundary method: A projection approach , 2007, J. Comput. Phys..

[27]  Levent Onural,et al.  Impulse functions over curves and surfaces and their applications to diffraction , 2006 .

[28]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[29]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[30]  Jos Derksen,et al.  Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity , 2002 .

[31]  Yutaka Tsuji,et al.  Turbulence modulation by dispersed solid particles in rotating channel flows , 2002 .

[32]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[33]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[34]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[35]  J. Pinton,et al.  Velocity measurement of a settling sphere , 2000 .

[36]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[37]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[38]  Farid F. Abraham,et al.  Functional Dependence of Drag Coefficient of a Sphere on Reynolds Number , 1970 .

[39]  Bruce M. Irons,et al.  A version of the Aitken accelerator for computer iteration , 1969 .

[40]  Frédéric Dubois,et al.  Micro-rheology of dense particulate flows: Application to immersed avalanches , 2011 .

[41]  Richard Wesley Hamming,et al.  Stable Predictor-Corrector Methods for Ordinary Differential Equations , 1959, JACM.