GRACE time-variable gravity field recovery using an improved energy balance approach

This Report was prepared for and submitted to the Graduate School of the Ohio State University as a dissertation in partial fulfillment of the requirements for the PhD degree.

[1]  C. Shum,et al.  On the formulation of gravitational potential difference between the GRACE satellites based on energy integral in Earth fixed frame , 2015 .

[2]  Wenji Zhao,et al.  Subregional‐scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain , 2015 .

[3]  P. Whitehouse,et al.  Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica , 2015 .

[4]  Christopher Jekeli,et al.  On the energy integral formulation of gravitational potential differences from satellite-to-satellite tracking , 2015 .

[5]  P. Döll,et al.  Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites , 2014 .

[6]  Rongjiang Wang,et al.  Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes , 2014 .

[7]  GRACE Gravity Modeling Using the Integrated Approach , 2014 .

[8]  C. Sakumura Comparison of Degree 60 and Degree 96 Monthly Solutions , 2014 .

[9]  Wenke Sun,et al.  Evaluation of glacier changes in high‐mountain Asia based on 10 year GRACE RL05 models , 2013 .

[10]  D. Chambers,et al.  Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications , 2013 .

[11]  David E. Smith,et al.  The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission , 2013 .

[12]  W. Feng,et al.  Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground‐based measurements , 2013 .

[13]  S. Calmant,et al.  Large‐scale hydrologic and hydrodynamic modeling of the Amazon River basin , 2013 .

[14]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[15]  M. Weigelt,et al.  An improved sampling rule for mapping geopotential functions of a planet from a near polar orbit , 2013, Journal of Geodesy.

[16]  Lei Wang,et al.  Regional surface mass anomalies from GRACE KBR measurements: Application of L‐curve regularization anda priori hydrological knowledge , 2012 .

[17]  F. Flechtner,et al.  Ocean tides from satellite altimetry and GRACE , 2012 .

[18]  C. Gerlach,et al.  Time‐variable gravity field from satellite constellations using the energy integral , 2012 .

[19]  A. Jäggi,et al.  Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach , 2012 .

[20]  K. Heki,et al.  Anomalous precipitation signatures of the Arctic Oscillation in the time‐variable gravity field by GRACE , 2012 .

[21]  Srinivas Bettadpur,et al.  Reducing errors in the GRACE gravity solutions using regularization , 2012, Journal of Geodesy.

[22]  Grzegorz Michalak,et al.  GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005 , 2012 .

[23]  W. Yi The Earth’s gravity field from GOCE , 2012 .

[24]  Pavel Ditmar,et al.  Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE , 2012, Journal of Geodesy.

[25]  Scott B. Luthcke,et al.  Simulation study of a follow-on gravity mission to GRACE , 2012, Journal of Geodesy.

[26]  F. Sansò,et al.  First GOCE gravity field models derived by three different approaches , 2011 .

[27]  Jing Guo,et al.  GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients , 2011 .

[28]  S. Gratton,et al.  GRACE-derived surface water mass anomalies by energy integral approach: application to continental hydrology , 2011 .

[29]  Changzhu Li,et al.  The Great 2008 Chinese Ice Storm: Its Socioeconomic–Ecological Impact and Sustainability Lessons Learned , 2011 .

[30]  Byron D. Tapley,et al.  The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE , 2010 .

[31]  A. Cazenave,et al.  Time-variable gravity from space and present-day mass redistribution in theEarth system , 2010 .

[32]  Xiangde Xu,et al.  The Dynamic and Thermodynamic Structures Associated with a Series of Heavy Precipitation Events over China during January 2008 , 2010 .

[33]  Qile Zhao,et al.  DEOS Mass Transport model (DMT-1) based on GRACE satellite data: methodology and validation , 2010 .

[34]  C. Shum,et al.  Non-isotropic Gaussian smoothing and leakage reduction for determining mass changes over land and ocean using GRACE data , 2010 .

[35]  N. G. Val’es,et al.  CNES/GRGS 10-day gravity field models (release 2) and their evaluation , 2010 .

[36]  Steven M. Klosko,et al.  Global Mass Flux Solutions from GRACE: A Comparison of Parameter Estimation Strategies - Mass Concentrations Versus Stokes Coefficients , 2010 .

[37]  A. Eicker,et al.  Deriving daily snapshots of the Earth's gravity field from GRACE L1B data using Kalman filtering , 2009 .

[38]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[39]  C. Shum,et al.  On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions , 2009 .

[40]  Eelco Doornbos,et al.  CHAMP and GRACE accelerometer calibration by GPS-based orbit determination , 2009 .

[41]  B. Tapley,et al.  Quick-Look Gravity Solutions From GRACE , 2008 .

[42]  C. Shum,et al.  Regional four-dimensional hydrological mass variations from GRACE, atmospheric flux convergence, and river gauge data , 2008 .

[43]  Adrian Jäggi,et al.  Highly-reduced dynamic orbits and their use for global gravity field recovery: A simulation study for GOCE , 2008 .

[44]  M. Tamisiea,et al.  A statistical filtering approach for Gravity Recovery and Climate Experiment (GRACE) gravity data , 2008 .

[45]  Richard Stone,et al.  Ecologists Report Huge Storm Losses in China's Forests , 2008, Science.

[46]  C. Shum,et al.  Continental Water Storage Changes from GRACE Line-of-Sight Range Acceleration Measurements , 2008 .

[47]  E. Schrama,et al.  Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics , 2007 .

[48]  M. K. Cheng,et al.  The GGM03 Mean Earth Gravity Model from GRACE , 2007 .

[49]  Ernst J. O. Schrama,et al.  Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations , 2007 .

[50]  M. Tamisiea,et al.  GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia , 2007, Science.

[51]  J. Kusche Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models , 2007 .

[52]  A. Eicker,et al.  ITG-Grace02s: a GRACE gravity field derived from range measurements of short arcs , 2007 .

[53]  Jean-Charles Marty,et al.  Temporal gravity field models inferred from GRACE data , 2007 .

[54]  B. D. Tapley,et al.  Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet , 2006, Science.

[55]  D. Chambers Evaluation of new GRACE time‐variable gravity data over the ocean , 2006 .

[56]  S. Swenson,et al.  A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois , 2006 .

[57]  Z. Kang,et al.  Precise orbit determination for the GRACE mission using only GPS data , 2006 .

[58]  C. Wagner,et al.  Degradation of Geopotential Recovery from Short Repeat-Cycle Orbits: Application to GRACE Monthly Fields , 2006 .

[59]  Christopher Jekeli,et al.  Precise estimation of in situ geopotential differences from GRACE low‐low satellite‐to‐satellite tracking and accelerometer data , 2006 .

[60]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[61]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[62]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[63]  Steven M. Klosko,et al.  Monthly spherical harmonic gravity field solutions determined from GRACE inter‐satellite range‐rate data alone , 2006 .

[64]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[65]  C. Gruber,et al.  Derivation of the CHAMP-only global gravity field model TUG-CHAMP04 applying the energy integral approach , 2006 .

[66]  John C. Ries,et al.  Precise orbit determination for GRACE using accelerometer data , 2006 .

[67]  R. Biancale,et al.  Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure data , 2006 .

[68]  C. K. Shum,et al.  Regional high‐resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets , 2006 .

[69]  C. Shum,et al.  Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement , 2005 .

[70]  C. Shum,et al.  Improved estimation of terrestrial water storage changes from GRACE , 2005 .

[71]  F. LeMoine,et al.  Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements , 2005 .

[72]  T. Otsubo,et al.  A simulation study of effects of GRACE orbit decay on the gravity field recovery , 2004 .

[73]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .

[74]  Pavel Ditmar,et al.  A technique for modeling the Earth’s gravity field on the basis of satellite accelerations , 2004 .

[75]  B. Tapley,et al.  Statistical Orbit Determination , 2004 .

[76]  C. Shum,et al.  Implementation of Parallel Least Square Algorithm for Gravity Field Inversion , 2004 .

[77]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[78]  P. Steigenberger,et al.  A CHAMP‐only gravity field model from kinematic orbits using the energy integral , 2003 .

[79]  Shin‐Chan Han Efficient Global Gravity Determination from Satellite-to-Satellite Tracking (SST) , 2003 .

[80]  Nico Sneeuw,et al.  Energy integral method for gravity field determination from satellite orbit coordinates , 2003 .

[81]  Christopher Jekeli,et al.  Efficient gravity field recovery using in situ disturbing potential observables from CHAMP , 2002 .

[82]  D. Rowlands,et al.  Short-arc analysis of intersatellite tracking data in a gravity mapping mission , 2002 .

[83]  C. Jekeli Inertial navigation systems with geodetic applications , 2000 .

[84]  C. Jekeli The determination of gravitational potential differences from satellite-to-satellite tracking , 1999 .

[85]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[86]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[87]  F. Morrison Comments on paper by Milo Wolff, ‘Direct measurements of the Earth's gravitational potential using a satellite pair’ , 1970 .

[88]  M. Wolff,et al.  Direct measurements of the Earth's gravitational potential using a satellite pair , 1969 .

[89]  A. Bjerhammar,et al.  On the energy integral for satellites , 1969 .