Leibniz type rule: ψ-Hilfer fractional operator
暂无分享,去创建一个
[1] Andrea Giusti,et al. Scott-Blair models with time-varying viscosity , 2018, Appl. Math. Lett..
[2] Ricardo Almeida,et al. A Caputo fractional derivative of a function with respect to another function , 2016, Commun. Nonlinear Sci. Numer. Simul..
[3] Thomas J. Osler,et al. Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .
[4] F. Mainardi. An historical perspective on fractional calculus in linear viscoelasticity , 2010, 1007.2959.
[5] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[6] J. Vanterler da C. Sousa,et al. On the ψ-Hilfer fractional derivative , 2017, Commun. Nonlinear Sci. Numer. Simul..
[7] Andrea Giusti,et al. A comment on some new definitions of fractional derivative , 2017, Nonlinear Dynamics.
[8] Vasily E. Tarasov,et al. Leibniz rule and fractional derivatives of power functions , 2016 .
[9] J. Machado,et al. A Review of Definitions for Fractional Derivatives and Integral , 2014 .
[10] José António Tenreiro Machado,et al. What is a fractional derivative? , 2015, J. Comput. Phys..
[11] J. A. Tenreiro Machado,et al. A new glance on the Leibniz rule for fractional derivatives , 2018, Commun. Nonlinear Sci. Numer. Simul..
[12] A. Rasheed,et al. Heat transfer at microscopic level in a MHD fractional inertial flow confined between non-isothermal boundaries , 2017 .
[13] Vasily E. Tarasov. No nonlocality. No fractional derivative , 2018, Commun. Nonlinear Sci. Numer. Simul..
[14] Thomas J. Osler,et al. A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval’s Formula , 1972 .
[15] A. Rasheed,et al. Joule heating in magnetic resistive flow with fractional Cattaneo–Maxwell model , 2018, Journal of the Brazilian Society of Mechanical Sciences and Engineering.
[16] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[17] José António Tenreiro Machado,et al. A review of definitions of fractional derivatives and other operators , 2019, J. Comput. Phys..
[18] A. Rasheed,et al. Interplay of chemical reacting species in a fractional viscoelastic fluid flow , 2019, Journal of Molecular Liquids.
[19] YangQuan Chen,et al. A new collection of real world applications of fractional calculus in science and engineering , 2018, Commun. Nonlinear Sci. Numer. Simul..
[20] Lokenath Debnath,et al. A brief historical introduction to fractional calculus , 2004 .
[21] Francesco Mainardi,et al. The fractional Dodson diffusion equation: a new approach , 2017, 1709.08994.
[22] Vasily E. Tarasov,et al. On chain rule for fractional derivatives , 2016, Commun. Nonlinear Sci. Numer. Simul..
[23] Roberto Garrappa,et al. Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations , 2019, Commun. Nonlinear Sci. Numer. Simul..
[24] J. A. Tenreiro Machado,et al. A critical analysis of the Caputo-Fabrizio operator , 2018, Commun. Nonlinear Sci. Numer. Simul..
[25] Thomas J. Osler,et al. Fractional Derivatives and Leibniz Rule , 1971 .
[26] Vasily E. Tarasov,et al. No violation of the Leibniz rule. No fractional derivative , 2013, Commun. Nonlinear Sci. Numer. Simul..
[27] Thomas J. Osler,et al. A Correction to Leibniz Rule for Fractional Derivatives , 1973 .
[28] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[29] Andrea Giusti,et al. Prabhakar-like fractional viscoelasticity , 2017, Commun. Nonlinear Sci. Numer. Simul..