Leibniz type rule: ψ-Hilfer fractional operator

Abstract In this paper, we present a Leibniz type rule for the ψ-Hilfer (ψ-H) fractional derivative operator in two forms, one written in terms of the ψ-Riemann-Liouville (ψ-RL) fractional derivative operator and the other in terms of the ψ-H fractional derivative operator. Direct consequences of this new formulation of a Leibniz type rule are the possibility of writing recurrence relations involving solutions of fractional differential equations and of investigating the existence, uniqueness and Ulam-Hyers stabilities of mild solutions of fractional differential equations involving ψ-H fractional operator. We present some specific cases of Leibniz type rule for the ψ-H fractional derivative operator which emerge from different choices of parameter β and the function ψ.

[1]  Andrea Giusti,et al.  Scott-Blair models with time-varying viscosity , 2018, Appl. Math. Lett..

[2]  Ricardo Almeida,et al.  A Caputo fractional derivative of a function with respect to another function , 2016, Commun. Nonlinear Sci. Numer. Simul..

[3]  Thomas J. Osler,et al.  Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .

[4]  F. Mainardi An historical perspective on fractional calculus in linear viscoelasticity , 2010, 1007.2959.

[5]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[6]  J. Vanterler da C. Sousa,et al.  On the ψ-Hilfer fractional derivative , 2017, Commun. Nonlinear Sci. Numer. Simul..

[7]  Andrea Giusti,et al.  A comment on some new definitions of fractional derivative , 2017, Nonlinear Dynamics.

[8]  Vasily E. Tarasov,et al.  Leibniz rule and fractional derivatives of power functions , 2016 .

[9]  J. Machado,et al.  A Review of Definitions for Fractional Derivatives and Integral , 2014 .

[10]  José António Tenreiro Machado,et al.  What is a fractional derivative? , 2015, J. Comput. Phys..

[11]  J. A. Tenreiro Machado,et al.  A new glance on the Leibniz rule for fractional derivatives , 2018, Commun. Nonlinear Sci. Numer. Simul..

[12]  A. Rasheed,et al.  Heat transfer at microscopic level in a MHD fractional inertial flow confined between non-isothermal boundaries , 2017 .

[13]  Vasily E. Tarasov No nonlocality. No fractional derivative , 2018, Commun. Nonlinear Sci. Numer. Simul..

[14]  Thomas J. Osler,et al.  A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval’s Formula , 1972 .

[15]  A. Rasheed,et al.  Joule heating in magnetic resistive flow with fractional Cattaneo–Maxwell model , 2018, Journal of the Brazilian Society of Mechanical Sciences and Engineering.

[16]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[17]  José António Tenreiro Machado,et al.  A review of definitions of fractional derivatives and other operators , 2019, J. Comput. Phys..

[18]  A. Rasheed,et al.  Interplay of chemical reacting species in a fractional viscoelastic fluid flow , 2019, Journal of Molecular Liquids.

[19]  YangQuan Chen,et al.  A new collection of real world applications of fractional calculus in science and engineering , 2018, Commun. Nonlinear Sci. Numer. Simul..

[20]  Lokenath Debnath,et al.  A brief historical introduction to fractional calculus , 2004 .

[21]  Francesco Mainardi,et al.  The fractional Dodson diffusion equation: a new approach , 2017, 1709.08994.

[22]  Vasily E. Tarasov,et al.  On chain rule for fractional derivatives , 2016, Commun. Nonlinear Sci. Numer. Simul..

[23]  Roberto Garrappa,et al.  Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations , 2019, Commun. Nonlinear Sci. Numer. Simul..

[24]  J. A. Tenreiro Machado,et al.  A critical analysis of the Caputo-Fabrizio operator , 2018, Commun. Nonlinear Sci. Numer. Simul..

[25]  Thomas J. Osler,et al.  Fractional Derivatives and Leibniz Rule , 1971 .

[26]  Vasily E. Tarasov,et al.  No violation of the Leibniz rule. No fractional derivative , 2013, Commun. Nonlinear Sci. Numer. Simul..

[27]  Thomas J. Osler,et al.  A Correction to Leibniz Rule for Fractional Derivatives , 1973 .

[28]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[29]  Andrea Giusti,et al.  Prabhakar-like fractional viscoelasticity , 2017, Commun. Nonlinear Sci. Numer. Simul..