The Role of Radionuclide Imaging in Epilepsy, Part 1: Sporadic Temporal and Extratemporal Lobe Epilepsy

Epilepsy is one of the most common yet diverse neurologic disorders, affecting almost 1%–2% of the population. Presently, radionuclide imaging such as PET and SPECT is not used in the primary diagnosis or evaluation of recent-onset epilepsy. However, it can play a unique and important role in certain specific situations, such as in noninvasive presurgical localization of epileptogenic brain regions in intractable-seizure patients being considered for epilepsy surgery. Radionuclide imaging can be particularly useful if MR imaging is either negative for lesions or shows several lesions of which only 1 or 2 are suspected to be epileptogenic and if electroencephalogram changes are equivocal or discordant with the structural imaging. Similarly, PET and SPECT can also be useful for evaluating the functional integrity of the rest of the brain and may provide useful information on the possible pathogenesis of the neurocognitive and behavioral abnormalities frequently observed in these patients.

[1]  D J Brooks,et al.  Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission , 2000, Neurology.

[2]  W H Theodore,et al.  Antiepileptic Drugs and Cerebral Glucose Metabolism , 1988, Epilepsia.

[3]  D. Ingvar,et al.  Regional cerebral blood flow in focal cortical epilepsy. , 1976, Archives of neurology.

[4]  B. Spännare,et al.  In Vitro Quantitative Autoradiography of [3H]‐L‐Deprenyl and [3H]‐PK 11195 Binding Sites in Human Epileptic Hippocampus , 1992, Epilepsia.

[5]  O Muzik,et al.  Objective method for localization of cortical asymmetries using positron emission tomography to aid surgical resection of epileptic foci. , 1998, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[6]  Laurent Spelle,et al.  Insular cortex involvement in mesiotemporal lobe epilepsy: A positron emission tomography study , 2002, Annals of neurology.

[7]  C. Rowe,et al.  Patterns of postictal cerebral blood flow in temporal lobe epilepsy , 1991, Neurology.

[8]  K. Byth,et al.  The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG‐PET , 2010, Epilepsia.

[9]  Karl J. Friston,et al.  Cerebral benzodiazepine receptors in hippocampal sclerosis. An objective in vivo analysis. , 1996, Brain : a journal of neurology.

[10]  D. Prince,et al.  Control mechanisms in cortical epileptogenic foci. "Surround" inhibition. , 1967, Archives of neurology.

[11]  Bengt Långström,et al.  NMDA‐Receptor Activity Visualized with (S)‐[N‐Methyl‐11C]Ketamine and Positron Emission Tomography in Patients with Medial Temporal Lobe Epilepsy , 1999, Epilepsia.

[12]  S. Sato,et al.  FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy , 1995, Neurology.

[13]  A. Alavi,et al.  Ipsilateral and contralateral thalamic hypometabolism as a predictor of outcome after temporal lobectomy for seizures. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  J. Mazziotta,et al.  Interictal metabolic anatomy of mesial temporal lobe epilepsy. , 1993, Archives of neurology.

[15]  D. Brooks,et al.  Focal cortical release of endogenous opioids during reading induced seizures , 1998, The Lancet.

[16]  H. Chugani,et al.  α-[¹¹C]-methyl-L-tryptophan PET for tracer localization of epileptogenic brain regions: clinical studies. , 2011, Biomarkers in medicine.

[17]  Alan A. Wilson,et al.  Quantification of mu and non–mu opiate receptors in temporal lobe epilepsy using positron emission tomography , 1991, Annals of neurology.

[18]  Markus Piel,et al.  Decreased Dopamine D2/D3‐Receptor Binding in Temporal Lobe Epilepsy: An [18F]Fallypride PET Study , 2006, Epilepsia.

[19]  I. Scheffer,et al.  Reduced striatal D1 receptor binding in autosomal dominant nocturnal frontal lobe epilepsy , 2008, Neurology.

[20]  Conrad V. Kufta,et al.  Temporal lobectomy for uncontrolled seizures: The role of positron emission tomography , 1992, Annals of neurology.

[21]  M. Newton,et al.  Ictal SPECT and Interictal PET in the Localization of Occipital Lobe Epilepsy , 2000, Epilepsia.

[22]  A. Khonsari,et al.  Improved Sensitivity of 18FDG‐Positron Emission Tomography Scans in Frontal and “Frontal Plus” Epilepsy , 1995, Epilepsia.

[23]  Alan A. Wilson,et al.  Mu‐opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy , 1988, Annals of neurology.

[24]  B. Brinkmann,et al.  Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome , 2000, Neurology.

[25]  H G Wieser,et al.  Mesiobasal versus lateral temporal lobe epilepsy , 1993, Neurology.

[26]  S. Berkovic,et al.  Ictal 99mTc‐HMPAO Single Photon Emission Computed Tomography in Children with Temporal Lobe Epilepsy , 1993, Epilepsia.

[27]  Dong Soo Lee,et al.  (18)F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[28]  G. Fein,et al.  Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy , 1997, Annals of neurology.

[29]  D. Lee,et al.  Diagnostic Performance of [18F]FDG‐PET and Ictal [99mTc]‐HMPAO SPECT in Occipital Lobe Epilepsy , 2001, Epilepsia.

[30]  Bertrand Devaux,et al.  Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. , 2004, Brain : a journal of neurology.

[31]  A. Alavi,et al.  Predictors of outcome after anterior temporal lobectomy , 1994, Neurology.

[32]  Jean-Claude Baron,et al.  Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons , 2003, NeuroImage.

[33]  D E Kuhl,et al.  In vivo cerebral metabolism and central benzodiazepine‐receptor binding in temporal lobe epilepsy , 1993, Neurology.

[34]  L. Borgwardt,et al.  Nuclear medicine in pediatric neurology and neurosurgery: epilepsy and brain tumors. , 2007, Seminars in nuclear medicine.

[35]  Otto Muzik,et al.  Objective Detection of Epileptic Foci by 18F-FDG PET in Children Undergoing Epilepsy Surgery , 2010, The Journal of Nuclear Medicine.

[36]  Otto Muzik,et al.  Identification of Frontal Lobe Epileptic Foci in Children Using Positron Emission Tomography , 1997, Epilepsia.

[37]  D J Brooks,et al.  Abnormalities of grey and white matter [11C]flumazenil binding in temporal lobe epilepsy with normal MRI. , 2002, Brain : a journal of neurology.

[38]  Al Bartolucci,et al.  Functional imaging: II. Prediction of epilepsy surgery outcome , 2008, Annals of neurology.

[39]  David C. Reutens,et al.  Assessment of the role of FDG PET in the diagnosis and management of children with refractory epilepsy , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[40]  Ivanka Savic,et al.  [11C]Flumazenil Positron Emission Tomography Visualizes Frontal Epileptogenic Regions , 1995, Epilepsia.

[41]  O Muzik,et al.  Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy , 2000, Neurology.

[42]  I Savic,et al.  Comparison of [11C]flumazenil and [18F]FDG as PET markers of epileptic foci. , 1993, Journal of neurology, neurosurgery, and psychiatry.

[43]  Karel G M Moons,et al.  Prognosis after temporal lobe epilepsy surgery: The value of combining predictors , 2008, Epilepsia.

[44]  S. Weinstein,et al.  Low incidence of abnormal 18FDG-PET in children with new-onset partial epilepsy: A prospective study , 2002, Neurology.

[45]  Jae Sung Lee,et al.  Diagnostic performance of 18F-FDG PET and ictal 99mTc-HMPAO SPET in pediatric temporal lobe epilepsy: Quantitative analysis by statistical parametric mapping, statistical probabilistic anatomical map, and subtraction ictal SPET , 2005, Seizure.

[46]  T. Yousry,et al.  Ictal ECD-SPECT differentiates between temporal and extratemporal epilepsy: confirmation by excellent postoperative seizure control , 2001, Nuclear medicine communications.

[47]  Mijin Yun,et al.  Relationship between bilateral temporal hypometabolism and EEG findings for mesial temporal lobe epilepsy: Analysis of 18F-FDG PET using SPM , 2006, Seizure.

[48]  R. Wennberg,et al.  The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy A meta-analysis , 2007, Seizure.

[49]  R. Kessler,et al.  Postsurgical outcome of patients with uncontrolled complex partial seizures and temporal lobe hypometabolism on 18FDG-positron emission tomography. , 1996, Investigative radiology.

[50]  B. Långström,et al.  PET with 11C‐deuterium‐deprenyl and
18F‐FDG in focal epilepsy , 2001, Acta neurologica Scandinavica.

[51]  A. Bye,et al.  Application of statistical parametric mapping to SPET in the assessment of intractable childhood epilepsy , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[52]  F. Leijten,et al.  The Added Value of [18F]‐Fluoro‐D‐deoxyglucose Positron Emission Tomography in Screening for Temporal Lobe Epilepsy Surgery , 2007, Epilepsia.

[53]  Tae Joo Jeon,et al.  Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy , 2000, European Journal of Nuclear Medicine.

[54]  Kazuhiko Yanai,et al.  Histamine H1 receptors in complex partial seizures , 1993, The Lancet.

[55]  Neda Bernasconi,et al.  α-[11C] methyl-L-tryptophan and glucose metabolism in patients with temporal lobe epilepsy , 2003, Neurology.

[56]  Alexander Hammers,et al.  Pharmacoresistance in Epilepsy : A Pilot PET Study with the P-Glycoprotein Substrate R-[ 11 C ] verapamil ∗ † , 2007 .

[57]  M. Behen,et al.  Bilateral Medial Prefrontal and Temporal Neocortical Hypometabolism in Children with Epilepsy and Aggression , 2001, Epilepsia.

[58]  B H Brinkmann,et al.  Subtraction SPECT co-registered to MRI improves postictal SPECT localization of seizure foci , 1999, Neurology.

[59]  P. Van Bogaert,et al.  Statistical Parametric Mapping of Regional Glucose Metabolism in Mesial Temporal Lobe Epilepsy , 2000, NeuroImage.

[60]  Karl J. Friston,et al.  Cortical grey matter and benzodiazepine receptors in malformations of cortical development. A voxel-based comparison of structural and functional imaging data. , 1997, Brain : a journal of neurology.

[61]  C. Binnie,et al.  Significance of interictal bilateral temporal hypometabolism in temporal lobe epilepsy , 2000, Neurology.

[62]  Conrad V. Kufta,et al.  FDG‐Positron Emission Tomography and Invasive EEG: Seizure Focus Detection and Surgical Outcome , 1997, Epilepsia.

[63]  O Muzik,et al.  Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome , 2001, Neurology.

[64]  L. Rozhkov,et al.  Multimodality imaging in the surgical treatment of children with nonlesional epilepsy , 2011, Neurology.

[65]  I Gardin,et al.  Use of subtraction ictal SPECT co-registered to MRI for optimizing the localization of seizure foci in children. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[66]  O W Witte,et al.  Prefrontal asymmetric interictal glucose hypometabolism and cognitive impairment in patients with temporal lobe epilepsy. , 1997, Brain : a journal of neurology.

[67]  J C Froment,et al.  Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. , 1998, Brain : a journal of neurology.

[68]  O. Muzik,et al.  Longitudinal Changes in Cortical Glucose Hypometabolism in Children With Intractable Epilepsy , 2006, Journal of child neurology.

[69]  O. Dulac,et al.  Single-photon emission computed tomography: ictal perfusion in childhood epilepsies , 1999, Brain and Development.

[70]  C. Jack,et al.  Subtraction ictal SPECT co‐registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus , 1998, Neurology.

[71]  J. Hirvonen,et al.  Increased In Vivo Expression of an Inflammatory Marker in Temporal Lobe Epilepsy , 2012, The Journal of Nuclear Medicine.

[72]  A. Hufnagel,et al.  Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. , 2006, Brain : a journal of neurology.

[73]  O Delalande,et al.  Ictal SPECT in children with epilepsy: comparison with intracranial EEG and relation to postsurgical outcome. , 2003, Brain : a journal of neurology.

[74]  H. Chugani,et al.  Clinical and histopathologic correlates of 11C‐alpha‐methyl‐l‐tryptophan (AMT) PET abnormalities in children with intractable epilepsy , 2011, Epilepsia.

[75]  C. Chung,et al.  Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia , 2009, Neurology.

[76]  Dong Soo Lee,et al.  Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of (18)F-FDG PET using SPM. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.