Strong interlayer coupling and stable topological flat bands in twisted bilayer photonic Moiré superlattices

[1]  T. Low,et al.  A perspective of twisted photonic structures , 2021, Applied Physics Letters.

[2]  N. J. Gerard,et al.  Photonic analog of bilayer graphene , 2021, Physical Review B.

[3]  J. Mørk,et al.  Physics and Applications of High‐β Micro‐ and Nanolasers , 2021, Advanced Optical Materials.

[4]  C. Grigoropoulos,et al.  Flat Bands in Magic-Angle Bilayer Photonic Crystals at Small Twists. , 2021, Physical review letters.

[5]  S. Fan,et al.  Theory for Twisted Bilayer Photonic Crystal Slabs. , 2021, Physical review letters.

[6]  Á. Rubio,et al.  Higher-Order Band Topology in Twisted Moiré Superlattice. , 2021, Physical review letters.

[7]  N. J. Gerard,et al.  Magic-angle bilayer phononic graphene , 2020, 2010.05940.

[8]  M. Parto,et al.  Non-Hermitian and topological photonics: optics at an exceptional point , 2020, Frontiers in Optics and Photonics.

[9]  L. Torner,et al.  Optical soliton formation controlled by angle twisting in photonic moiré lattices , 2020, Nature Photonics.

[10]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[11]  L. Torner,et al.  Localization and delocalization of light in photonic moiré lattices , 2019, Nature.

[12]  B. Bernevig,et al.  All Magic Angles in Twisted Bilayer Graphene are Topological. , 2019, Physical review letters.

[13]  Moon Jip Park,et al.  Higher-Order Topological Insulator in Twisted Bilayer Graphene. , 2019, Physical review letters.

[14]  Bohm-Jung Yang,et al.  Stiefel–Whitney classes and topological phases in band theory , 2019, Chinese Physics B.

[15]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[16]  B. Bradlyn,et al.  Engineering fragile topology in photonic crystals: Topological quantum chemistry of light , 2019, Physical Review Research.

[17]  T. Taniguchi,et al.  Magic Angle Spectroscopy , 2018, 1812.08776.

[18]  A. Vishwanath,et al.  Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and Wannier obstructions , 2018, Physical Review B.

[19]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[20]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[21]  M. I. Aroyo,et al.  Topological quantum chemistry , 2017, Nature.

[22]  Toshiro Matsumoto,et al.  Periodic band structure calculation by the Sakurai–Sugiura method with a fast direct solver for the boundary element method with the fast multipole representation , 2016 .

[23]  Lei Du,et al.  An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integral method , 2016, J. Comput. Phys..

[24]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[25]  Tetsuya Sakurai,et al.  Efficient Parameter Estimation and Implementation of a Contour Integral-Based Eigensolver , 2013 .

[26]  Toru Takahashi,et al.  Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method , 2013 .

[27]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[28]  C. Kane,et al.  Topological Defects and Gapless Modes in Insulators and Superconductors , 2010, 1006.0690.

[29]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[30]  N. Peres,et al.  Graphene bilayer with a twist: electronic structure. , 2007, Physical review letters.

[31]  J. Wiersig Boundary element method for resonances in dielectric microcavities , 2002, physics/0206018.

[32]  A. Campillo,et al.  Optical processes in microcavities , 1996 .

[33]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[34]  Im,et al.  Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavities , 2018 .

[35]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[36]  K. Vahala Optical microcavities , 2003, Nature.

[37]  Reinecke,et al.  Boundary-element method for the calculation of electronic states in semiconductor nanostructures. , 1996, Physical Review B (Condensed Matter).

[38]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .