Turbo-Like Beamforming Based on Tabu Search Algorithm for Millimeter-Wave Massive MIMO Systems

For millimeter-wave (mmWave) massive multiple-input-multiple-output (MIMO) systems, codebook-based analog beamforming (including transmit precoding and receive combining) is usually used to compensate the severe attenuation of mmWave signals. However, conventional beamforming schemes involve complicated search among predefined codebooks to find out the optimal pair of analog precoder and analog combiner. To solve this problem, by exploring the idea of turbo equalizer together with the tabu search (TS) algorithm, we propose a Turbo-like beamforming scheme based on TS, which is called Turbo-TS beamforming in this paper, to achieve near-optimal performance with low complexity. Specifically, the proposed Turbo-TS beamforming scheme is composed of the following two key components: 1) Based on the iterative information exchange between the base station (BS) and the user, we design a Turbo-like joint search scheme to find out the near-optimal pair of analog precoder and analog combiner; and 2) inspired by the idea of the TS algorithm developed in artificial intelligence, we propose a TS-based precoding/combining scheme to intelligently search the best precoder/combiner in each iteration of Turbo-like joint search with low complexity. Analysis shows that the proposed Turbo-TS beamforming can considerably reduce the searching complexity, and simulation results verify that it can achieve near-optimal performance.

[1]  Edin Zhang,et al.  On Achieving Optimal Rate of Digital Precoder by RF-Baseband Codesign for MIMO Systems , 2014, 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).

[2]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[3]  Luc Vandendorpe,et al.  On the Number of RF Chains and Phase Shifters, and Scheduling Design With Hybrid Analog–Digital Beamforming , 2014, IEEE Transactions on Wireless Communications.

[4]  Rose Qingyang Hu,et al.  Key elements to enable millimeter wave communications for 5G wireless systems , 2014, IEEE Wireless Communications.

[5]  Long Bao Le,et al.  Hybrid Analog-Digital Beamforming: How Many RF Chains and Phase Shifters Do We Need? , 2014, ArXiv.

[6]  Robert W. Heath,et al.  The capacity optimality of beam steering in large millimeter wave MIMO systems , 2012, 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[7]  Thomas L. Marzetta,et al.  Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas , 2010, IEEE Transactions on Wireless Communications.

[8]  A.F. Molisch,et al.  Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection , 2005, IEEE Transactions on Signal Processing.

[9]  Shuangfeng Han,et al.  Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G , 2015, IEEE Communications Magazine.

[10]  Chin-Sean Sum,et al.  Beam Codebook Based Beamforming Protocol for Multi-Gbps Millimeter-Wave WPAN Systems , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[11]  Shuangfeng Han,et al.  Low-Complexity Soft-Output Signal Detection Based on Gauss–Seidel Method for Uplink Multiuser Large-Scale MIMO Systems , 2014, IEEE Transactions on Vehicular Technology.

[12]  Linglong Dai,et al.  Spectrally Efficient Time-Frequency Training OFDM for Mobile Large-Scale MIMO Systems , 2013, IEEE Journal on Selected Areas in Communications.

[13]  James V. Krogmeier,et al.  Millimeter Wave Beamforming for Wireless Backhaul and Access in Small Cell Networks , 2013, IEEE Transactions on Communications.

[14]  Linglong Dai,et al.  Structured Compressive Sensing Based Superimposed Pilot Design in Downlink Large-Scale MIMO Systems , 2014, ArXiv.

[15]  Dmitry Akhmetov,et al.  Ieee 802.11ad: introduction and performance evaluation of the first multi-gbps wifi technology , 2010, mmCom '10.

[16]  Zhouyue Pi,et al.  An introduction to millimeter-wave mobile broadband systems , 2011, IEEE Communications Magazine.

[17]  Kyungwhoon Cheun,et al.  Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results , 2014, IEEE Communications Magazine.

[18]  Robert W. Heath,et al.  Spatially Sparse Precoding in Millimeter Wave MIMO Systems , 2013, IEEE Transactions on Wireless Communications.

[19]  Taeyoung Kim,et al.  Tens of Gbps support with mmWave beamforming systems for next generation communications , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[20]  Long Bao Le,et al.  Beamforming for multiuser massive MIMO systems: Digital versus hybrid analog-digital , 2014, 2014 IEEE Global Communications Conference.

[21]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..