Soft Electronic Skin for Multi‐Site Damage Detection and Localization

[1]  Jacob J. Adams,et al.  Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. , 2015, Small.

[2]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[4]  Noy Cohen,et al.  A numerical study of the electromechanical response of liquid metal embedded elastomers , 2019, International Journal of Non-Linear Mechanics.

[5]  Johan Liu,et al.  Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment , 2015, Scientific Reports.

[6]  Vincent Duchaine,et al.  Soft Tactile Skin Using an Embedded Ionic Liquid and Tomographic Imaging , 2015 .

[7]  Rachelle N. Palchesko,et al.  Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve , 2012, PloS one.

[8]  Geoffrey A. Slipher,et al.  Deformable liquid metal polymer composites with tunable electronic and mechanical properties , 2018, Journal of Materials Research.

[9]  Rebecca K. Kramer,et al.  All‐Printed Flexible and Stretchable Electronics , 2017, Advanced materials.

[10]  Carmel Majidi,et al.  An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics , 2018, Nature Materials.

[11]  Mohammad Pour-Ghaz,et al.  Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete , 2014 .

[12]  Carmel Majidi,et al.  Liquid‐Phase Metal Inclusions for a Conductive Polymer Composite , 2015, Advanced materials.

[13]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[14]  Michelle C. Yuen,et al.  Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics. , 2018, ACS applied materials & interfaces.

[15]  Kenneth J Loh,et al.  Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites , 2013, Nanotechnology.

[16]  N. Sottos,et al.  Autonomous Indication of Mechanical Damage in Polymeric Coatings , 2016, Advanced materials.

[17]  Robert Y. Wang,et al.  In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives. , 2018, ACS applied materials & interfaces.

[18]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[19]  O. S. Salawu Detection of structural damage through changes in frequency: a review , 1997 .

[20]  Carmel Majidi,et al.  Stretchable, High‐k Dielectric Elastomers through Liquid‐Metal Inclusions , 2016, Advanced materials.

[21]  B. Sumerlin,et al.  Future perspectives and recent advances in stimuli-responsive materials , 2010 .

[22]  Nikolaus Correll,et al.  Materials that couple sensing, actuation, computation, and communication , 2015, Science.

[23]  Carmel Majidi,et al.  Extreme Toughening of Soft Materials with Liquid Metal , 2018, Advanced materials.

[24]  Zhenan Bao,et al.  A bioinspired flexible organic artificial afferent nerve , 2018, Science.

[25]  Klas Hjort,et al.  Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer , 2015, Scientific Reports.

[26]  Thomas H. Epps,et al.  Stimuli responsive materials. , 2013, Chemical Society reviews.

[27]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[28]  Michael D. Bartlett,et al.  Mechanical and Functional Tradeoffs in Multiphase Liquid Metal, Solid Particle Soft Composites , 2018, Advanced Functional Materials.

[29]  Jerome P. Lynch,et al.  Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications , 2007 .

[30]  Michael D. Dickey,et al.  Self‐Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics , 2013, Advanced materials.

[31]  P. Wilcox,et al.  Flexible interdigital PVDF transducers for the generation of Lamb waves in structures , 1997 .

[32]  Rebecca K. Kramer,et al.  Mechanically Sintered Gallium–Indium Nanoparticles , 2015, Advanced materials.

[33]  George M. Whitesides,et al.  A soft, bistable valve for autonomous control of soft actuators , 2018, Science Robotics.

[34]  Robert J. Wood,et al.  Untethered soft robotics , 2018 .

[35]  Mitchell T. Ong,et al.  Force-induced activation of covalent bonds in mechanoresponsive polymeric materials , 2009, Nature.

[36]  T. Trung,et al.  Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human‐Activity Monitoringand Personal Healthcare , 2016, Advanced materials.

[37]  Nancy R. Sottos,et al.  Polymers with autonomous life-cycle control , 2016, Nature.

[38]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[39]  Weihua Li,et al.  A Wheeled Robot Driven by a Liquid‐Metal Droplet , 2018, Advanced materials.

[40]  Heinrich M. Jaeger,et al.  Designer Matter: A perspective , 2015 .

[41]  Kenneth J. Loh,et al.  Strain sensing using photocurrent generated by photoactive P3HT-based nanocomposites , 2012 .

[42]  K. Tseng,et al.  Smart piezoelectric transducers for in situ health monitoring of concrete , 2004 .

[43]  N. Bruns,et al.  Self‐Reporting Fiber‐Reinforced Composites That Mimic the Ability of Biological Materials to Sense and Report Damage , 2018, Advanced materials.

[44]  Xuan Wu,et al.  A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability. , 2016, Lab on a chip.

[45]  Constantinos Soutis,et al.  Damage detection in composite materials using lamb wave methods , 2002 .

[46]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[47]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[48]  Michael D. Bartlett,et al.  High thermal conductivity in soft elastomers with elongated liquid metal inclusions , 2017, Proceedings of the National Academy of Sciences.

[49]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.