Semantic Security for Quantum Wiretap Channels

We determine the semantic security capacity for quantum wiretap channels. We extend methods for classical channels to quantum channels to demonstrate that a strongly secure code guarantees a semantically secure code with the same secrecy rate. Furthermore, we show how to transform a non-secure code into a semantically secure code by means of biregular irreducible functions (BRI functions). We analyze semantic security for classical-quantum channels and for quantum channels.

[1]  Tomohiro Ogawa,et al.  Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.

[2]  Ning Cai,et al.  Quantum privacy and quantum wiretap channels , 2004, Probl. Inf. Transm..

[3]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[4]  Masahito Hayashi,et al.  Quantum Wiretap Channel With Non-Uniform Random Number and Its Exponent and Equivocation Rate of Leaked Information , 2012, IEEE Transactions on Information Theory.

[5]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[6]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[7]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[8]  Holger Boche,et al.  Secure and Robust Identification via Classical-Quantum Channels , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[9]  K. Audenaert,et al.  Quantum state discrimination bounds for finite sample size , 2012, 1204.0711.

[10]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[11]  M. E. Shirokov,et al.  Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity, and for capacities of quantum channels , 2015, 1512.09047.

[12]  Alexander Vardy,et al.  A Cryptographic Treatment of the Wiretap Channel , 2012, IACR Cryptol. ePrint Arch..

[13]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Masahito Hayashi,et al.  Secure multiplex coding with dependent and non-uniform multiple messages , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[15]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[16]  Holger Boche,et al.  Classical–quantum arbitrarily varying wiretap channel: Ahlswede dichotomy, positivity, resources, super-activation , 2013, Quantum Inf. Process..

[17]  Rudolf Ahlswede,et al.  Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels , 2010, ArXiv.

[18]  A. S. Holevo Complementary Channels and the Additivity Problem , 2005 .

[19]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[20]  Holger Boche,et al.  Secure and Robust Identification via Classical-Quantum Channels , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[21]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[22]  Holger Boche,et al.  Classical-quantum arbitrarily varying wiretap channel: common randomness assisted code and continuity , 2016, Quantum Information Processing.

[23]  Rudolf Ahlswede,et al.  Classical Capacity of Classical-Quantum Arbitrarily Varying Channels , 2007, IEEE Transactions on Information Theory.

[24]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[25]  U. Maurer The Strong Secret Key Rate of Discrete Random Triples , 1994 .

[26]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[27]  M. Hayashi Quantum Information Theory , 2017 .

[28]  Moritz Wiese,et al.  Semantic Security and the Second-Largest Eigenvalue of Biregular Graphs , 2018, ArXiv.

[29]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[30]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[31]  R. Bhatia Matrix Analysis , 1996 .

[32]  Alexander Vardy,et al.  Semantic Security for the Wiretap Channel , 2012, CRYPTO.

[33]  Holger Boche,et al.  Semantic Security via Seeded Modular Coding Schemes and Ramanujan Graphs , 2021, IEEE Transactions on Information Theory.

[34]  Holger Boche,et al.  Secret message transmission over quantum channels under adversarial quantum noise: Secrecy capacity and super-activation , 2017, Journal of Mathematical Physics.

[35]  D. Vere-Jones Markov Chains , 1972, Nature.

[36]  Holger Boche,et al.  Arbitrarily small amounts of correlation for arbitrarily varying quantum channels , 2013, 2013 IEEE International Symposium on Information Theory.

[37]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[38]  I. Devetak,et al.  The private classical information capacity and quantum information capacity of a quantum channel , 2003 .

[39]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[40]  Rudolf Ahlswede,et al.  New directions in the theory of identification via channels , 1995, IEEE Trans. Inf. Theory.

[41]  Rudolf Ahlswede,et al.  Identification via channels , 1989, IEEE Trans. Inf. Theory.

[42]  Holger Boche,et al.  Classical-quantum arbitrarily varying wiretap channel: Secret message transmission under jamming attacks , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[43]  A. Holevo,et al.  Capacity of quantum Gaussian channels , 1999 .

[44]  Andreas J. Winter,et al.  Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.

[45]  W. Stinespring Positive functions on *-algebras , 1955 .

[46]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[47]  Privacy of a lossy bosonic memory channel , 2006, quant-ph/0603024.

[48]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[49]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[50]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[51]  Benjamin Schumacher,et al.  Approximate Quantum Error Correction , 2002, Quantum Inf. Process..

[52]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[53]  R. Ahlswede Elimination of correlation in random codes for arbitrarily varying channels , 1978 .

[54]  Holger Boche,et al.  Secrecy capacities of compound quantum wiretap channels and applications , 2013, ArXiv.