A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics

A new hybrid multi-time method for multi-time scales structural dynamics simulations is described. A monolithic method in a Schur dual domain decomposition framework is proposed and allows to consider heterogeneous time integrators with their own time discretization and possible large ratio between the time steps for each subdomain. In the proposed method, zero numerical dissipation is ensured at the interface. This implies that the global stability of the coupling method is governed by the stability of each time integrator without influence of the interface. For that purpose, velocity continuity is ensured in a weak sense at the interfaces, and time integrators (Newmark, HHT, Simo, Krenk, Verlet) are introduced in a unified framework (incremental velocity formulation). Furthermore, dynamics governing equations are introduced from a weak formulation in time. In other words, equilibrium equation is no more ensured in a strong sense at a given time step, but rather on average on a time interval. Some numerical examples illustrate the efficiency and the robustness of the proposed method, for ratio of time scales close to 1000 without any numerical dissipation at the interfaces.

[1]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[2]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[3]  Ted Belytschko,et al.  Mixed-time implicit-explicit finite elements for transient analysis , 1982 .

[4]  Wing Kam Liu,et al.  Stability of multi-time step partitioned integrators for first-order finite element systems , 1985 .

[5]  Pénélope Leyland,et al.  Consistency Analysis of Fluid-Structure Interaction Algorithms , 1998 .

[6]  W. Daniel Explicit/implicit partitioning and a new explicit form of the generalized alpha method , 2003 .

[7]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[8]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[9]  Kumar K. Tamma,et al.  Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics , 2004 .

[10]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .

[11]  W. Daniel Analysis and implementation of a new constant acceleration subcycling algorithm , 1997 .

[12]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[13]  Juan J. Alonso,et al.  Fully-implicit time-marching aeroelastic solutions , 1994 .

[14]  Alain Combescure,et al.  Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .

[15]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[16]  Steen Krenk,et al.  Extended state‐space time integration with high‐frequency energy dissipation , 2008 .

[17]  Vincent Faucher,et al.  Local modal reduction in explicit dynamics with domain decomposition. Part 1: extension to subdomains undergoing finite rigid rotations , 2004 .

[18]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[19]  Alain Combescure,et al.  An approach to the connection between subdomains with non‐matching meshes for transient mechanical analysis , 2002 .

[20]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS: IMPLEMENTATION AND NUMERICAL EXAMPLES. , 1978 .

[21]  Ted Belytschko,et al.  Multi-Stepping Implicit-Explicit Procedures in Transient Analysis , 1984 .

[22]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .

[23]  van Eh Harald Brummelen,et al.  A monolithic approach to fluid–structure interaction , 2004 .

[24]  W. Daniel A study of the stability of subcycling algorithms in structural dynamics , 1998 .

[25]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .

[26]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[27]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[28]  A. Prakash,et al.  A FETI‐based multi‐time‐step coupling method for Newmark schemes in structural dynamics , 2004 .

[29]  Petr Krysl,et al.  Explicit Newmark/Verlet algorithm for time integration of the rotational dynamics of rigid bodies , 2005 .

[30]  S. Krenk The role of geometric stiffness in momentum and energy conserving time integration , 2007 .

[31]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[32]  Ted Belytschko,et al.  Multi-time-step integration using nodal partitioning , 1988 .

[33]  Kumar K. Tamma,et al.  Algorithms by design: A new normalized time‐weighted residual methodology and design of a family of energy–momentum conserving algorithms for non‐linear structural dynamics , 2009 .

[34]  T. Belytschko,et al.  Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations , 1996 .

[35]  Alain Combescure,et al.  A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis , 2002 .

[36]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[37]  Ted Belytschko,et al.  Proceedings of the International Conference on Innovative Methods for Nonlinear Problems , 1984 .

[38]  J. Marsden,et al.  Variational time integrators , 2004 .

[39]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[40]  Folco Casadei,et al.  Binary spatial partitioning of the central‐difference time integration scheme for explicit fast transient dynamics , 2009 .

[41]  William J.T. Daniel,et al.  A partial velocity approach to subcycling structural dynamics , 2003 .

[42]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[43]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[44]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .