Blocking Probability for M/G/1 Vacation Systems with Occupancy Level Dependent Schedules

An M/G/1 queue with finite buffer capacity and server vacation schedules dependent on occupancy level is studied. The blocking probability is expressed simply in terms of the ergodic queue length probabilities for the infinite buffer case.

[1]  J. George Shanthikumar,et al.  On Stochastic Decomposition in M/G/1 Type Queues with Generalized Server Vacations , 1988, Oper. Res..

[2]  H. C. Tijms,et al.  Algorithms for the state probabilities and waiting times in single server queueing systems with random and quasirandom input and phase-type service times , 1982 .

[3]  J. Keilson,et al.  On Time Dependent Queuing Processes , 1960 .

[4]  Leslie D. Servi Average Delay Approximation of M/G/1 Cyclic Service Queues with Bernoulli Schedules , 1986, IEEE J. Sel. Areas Commun..

[5]  Awi Federgruen,et al.  COMPUTATION OF THE STATIONARY DISTRIBUTION OF THE QUEUE SIZE IN AN M/G/1 QUEUEING SYSTEM , 1979 .

[6]  Hong Linh Truong,et al.  Mean-delay approximation for cyclic-service queueing systems , 1983, Perform. Evaluation.

[7]  Robert B. Cooper,et al.  Queues served in cyclic order , 1969 .

[8]  Leslie D. Servi,et al.  D/G/1 Queues with Vacations , 1986, Oper. Res..

[9]  L. D. Servi,et al.  The busy period of the migi1 vacation model with a bernoulli schedule , 1988 .

[10]  Daniel P. Heyman,et al.  Optimal Operating Policies for M/G/1 Queuing Systems , 1968, Oper. Res..

[11]  J. Keilson,et al.  Dynamics of the M/G/1 Vacation Model , 1987, Oper. Res..

[12]  William G. Marchal,et al.  State Dependence in M/G/1 Server-Vacation Models , 1988, Oper. Res..

[13]  U. Yechiali,et al.  Utilization of idle time in an M/G/1 queueing system Management Science 22 , 1975 .

[14]  Carl M. Harris,et al.  Fundamentals of queueing theory , 1975 .

[15]  Robert B. Cooper,et al.  An Introduction To Queueing Theory , 2016 .

[16]  Julian Keilson,et al.  Oscillating random walk models for GI/G/1 vacation systems with Bernoulli schedules , 1986, Journal of Applied Probability.

[17]  Carl M. Harris,et al.  Fundamentals of queueing theory (2nd ed.). , 1985 .

[18]  Stephen S. Lavenberg,et al.  The Steady-State Queueing Time Distribution for the M/G/1 Finite Capacity Queue , 1975 .

[19]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[20]  R. B. Cooper,et al.  Application of decomposition principle in M/G/1 vacation model to two continuum cyclic queueing models — Especially token-ring LANs , 1985, AT&T Technical Journal.

[21]  P.-J. Courtois,et al.  The M/G/1 Finite Capacity Queue with Delays , 1980, IEEE Trans. Commun..

[22]  E. Gelenbe,et al.  A queue with server of walking type (autonomous service) , 1978, Advances in Applied Probability.

[23]  J. Keilson The Ergodic Queue Length Distribution for Queueing Systems with Finite Capacity , 1966 .

[24]  S. W. Fuhrmann Technical Note - A Note on the M/G/1 Queue with Server Vacations , 1984, Oper. Res..

[25]  Hideaki Takagi,et al.  Analysis of polling systems , 1986 .

[26]  Tony T. Lee,et al.  M/G/1/N Queue with Vacation Time and Exhaustive Service Discipline , 1984, Oper. Res..