Robust estimator of the correlation matrix with sparse Kronecker structure for a high-dimensional matrix-variate
暂无分享,去创建一个
Junlong Zhao | Lu Niu | Xiumin Liu | Junlong Zhao | Lu Niu | Xiumin Liu
[1] Harald H. Sitte,et al. Imaging genetics of mood disorders , 2010, NeuroImage.
[2] Terrence J. Sejnowski,et al. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis , 2007, NeuroImage.
[3] Petre Stoica,et al. On Estimation of Covariance Matrices With Kronecker Product Structure , 2008, IEEE Transactions on Signal Processing.
[4] M. Fox,et al. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.
[5] P. Dutilleul. The mle algorithm for the matrix normal distribution , 1999 .
[6] Larry A. Wasserman,et al. High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.
[7] Lexin Li,et al. Regularized matrix regression , 2012, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[8] Paul M. Thompson,et al. Genetics of the connectome , 2013, NeuroImage.
[9] R. Serfling. Approximation Theorems of Mathematical Statistics , 1980 .
[10] James R. Schott,et al. Testing for elliptical symmetry in covariance-matrix-based analyses , 2002 .
[11] Hongtu Zhu,et al. L2RM: Low-Rank Linear Regression Models for High-Dimensional Matrix Responses , 2019, Journal of the American Statistical Association.
[12] Hongzhe Li,et al. Model selection and estimation in the matrix normal graphical model , 2012, J. Multivar. Anal..
[13] Mladen Kolar,et al. ROCKET: Robust Confidence Intervals via Kendall's Tau for Transelliptical Graphical Models , 2015, The Annals of Statistics.
[14] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[15] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[16] Hongzhe Li,et al. Graphical model selection and estimation for high dimensional tensor data , 2014, J. Multivar. Anal..
[17] Han Liu,et al. Optimal Rates of Convergence of Transelliptical Component Analysis , 2013 .
[18] A. Quiroz,et al. A Statistic for Testing the Null Hypothesis of Elliptical Symmetry , 2002 .
[19] Neda Jahanshad,et al. Whole-genome analyses of whole-brain data: working within an expanded search space , 2014, Nature Neuroscience.
[20] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[21] Ming Li,et al. 2D-LDA: A statistical linear discriminant analysis for image matrix , 2005, Pattern Recognit. Lett..
[22] Han Liu,et al. Scale-Invariant Sparse PCA on High-Dimensional Meta-Elliptical Data , 2014, Journal of the American Statistical Association.
[23] Han Liu,et al. High-dimensional semiparametric bigraphical models , 2013 .
[24] Chenlei Leng,et al. Covariance estimation via sparse Kronecker structures , 2018, Bernoulli.
[25] N. Altman,et al. On dimension folding of matrix- or array-valued statistical objects , 2010, 1002.4789.
[26] Gordon K. Smyth,et al. limma: Linear Models for Microarray Data , 2005 .
[27] Hung Hung,et al. Matrix variate logistic regression model with application to EEG data. , 2011, Biostatistics.
[28] Chenlei Leng,et al. Sparse Matrix Graphical Models , 2012 .
[29] Junlong Zhao,et al. High dimensional semiparametric estimate of latent covariance matrix for matrix-variate , 2019, Statistica Sinica.
[30] Cheolyong Park,et al. A test for elliptical symmetry , 2007 .
[31] Haiyan Huang,et al. A Statistical Framework to Infer Functional Gene Relationships From Biologically Interrelated Microarray Experiments , 2009 .
[32] Ying Cui,et al. Sparse estimation of high-dimensional correlation matrices , 2016, Comput. Stat. Data Anal..
[33] Lixing Zhu,et al. Conditional tests for elliptical symmetry , 2003 .
[34] A. Hero,et al. Convergence Properties of Kronecker Graphical Lasso Algorithms , 2013 .
[35] A. Owen,et al. AGEMAP: A Gene Expression Database for Aging in Mice , 2007, PLoS genetics.
[36] Multivariate Data Analysis of In Situ Pulp Kinetics Using 13 C CP/MAS NMR , 1989 .
[37] Jun Zhang,et al. Robust rank correlation based screening , 2010, 1012.4255.
[38] Alfred O. Hero,et al. Covariance Estimation in High Dimensions Via Kronecker Product Expansions , 2013, IEEE Transactions on Signal Processing.
[39] Wicher P. Bergsma,et al. A consistent test of independence based on a sign covariance related to Kendall's tau , 2010, 1007.4259.
[40] Peter D. Hoff,et al. Separable covariance arrays via the Tucker product, with applications to multivariate relational data , 2010, 1008.2169.