Induction of genome instability by DNA damage in Saccharomyces cerevisiae.

[1]  Kyungjae Myung,et al.  Maintenance of Genome Stability in Saccharomyces cerevisiae , 2002, Science.

[2]  R. Kolodner,et al.  Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  F. Mandelli,et al.  Advances in the understanding and management of acute promyelocytic leukemia. , 2002, Reviews in clinical and experimental hematology.

[4]  C. Gilbert,et al.  Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. , 2001, Molecular cell.

[5]  T. Bennett,et al.  Saccharomyces cerevisiae rad51 mutants are defective in DNA damage-associated sister chromatid exchanges but exhibit increased rates of homology-directed translocations. , 2001, Genetics.

[6]  R. Kolodner,et al.  Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae , 2001, Nature.

[7]  V. Lundblad,et al.  Defects in mismatch repair promote telomerase-independent proliferation , 2001, Nature.

[8]  A. Simpson,et al.  Analysis of Vγ/Jβtrans‐rearrangements in paediatric patients undergoing chemotherapy , 2001, British journal of haematology.

[9]  J. Petrini,et al.  A DNA damage response pathway controlled by Tel1 and the Mre11 complex. , 2001, Molecular cell.

[10]  C. Felix Leukemias related to treatment with DNA topoisomerase II inhibitors. , 2001, Medical and pediatric oncology.

[11]  C. Newlon,et al.  RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. , 2001, Genes & development.

[12]  K. Khanna,et al.  DNA double-strand breaks: signaling, repair and the cancer connection , 2001, Nature Genetics.

[13]  J. Haber,et al.  Genetic Requirements for RAD51- andRAD54-Independent Break-Induced Replication Repair of a Chromosomal Double-Strand Break , 2001, Molecular and Cellular Biology.

[14]  R. Kolodner,et al.  Suppression of Spontaneous Chromosomal Rearrangements by S Phase Checkpoint Functions in Saccharomyces cerevisiae , 2001, Cell.

[15]  M. Jasin,et al.  BRCA2 is required for homology-directed repair of chromosomal breaks. , 2001, Molecular cell.

[16]  Jin-Qiu Zhou,et al.  Pif1p helicase, a catalytic inhibitor of telomerase in yeast. , 2000, Science.

[17]  M. Falconi,et al.  DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. , 2000, Mutation research.

[18]  J. Haber,et al.  Lucky breaks: analysis of recombination in Saccharomyces. , 2000, Mutation research.

[19]  M. Resnick,et al.  Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. , 2000, Mutation research.

[20]  J. Petrini The Mre11 complex and ATM: collaborating to navigate S phase. , 2000, Current opinion in cell biology.

[21]  D. Livingston,et al.  ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response , 2000, Nature.

[22]  M. Gatei,et al.  ATM-dependent phosphorylation of nibrin in response to radiation exposure , 2000, Nature Genetics.

[23]  S. Gasser,et al.  The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. , 2000, Genes & development.

[24]  D. Gottschling,et al.  Telomerase-Mediated Telomere Addition In Vivo Requires DNA Primase and DNA Polymerases α and δ , 1999, Cell.

[25]  T. Stankovic,et al.  The DNA Double-Strand Break Repair Gene hMRE11 Is Mutated in Individuals with an Ataxia-Telangiectasia-like Disorder , 1999, Cell.

[26]  S. Elledge,et al.  Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. , 1999, Science.

[27]  W. Coleman,et al.  The role of genomic instability in human carcinogenesis. , 1999, Anticancer research.

[28]  R. Kolodner,et al.  Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants , 1999, Nature Genetics.

[29]  C. Wang,et al.  Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. , 1999, Science.

[30]  G. Marsischky,et al.  Eukaryotic DNA mismatch repair. , 1999, Current opinion in genetics & development.

[31]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[32]  J. Haber,et al.  The Many Interfaces of Mre11 , 1998, Cell.

[33]  J. Jiricny Replication errors: cha(lle)nging the genome , 1998, The EMBO journal.

[34]  J. Haber,et al.  Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. , 1998, Genetics.

[35]  M. Polymeropoulos,et al.  Cytogenetic and molecular characterization of random chromosomal rearrangements activating the drug resistance gene, MDR1/P‐glycoprotein, in drug‐selected cell lines and patients with drug refractory ALL , 1998, Genes, chromosomes & cancer.

[36]  J. Haber,et al.  Saccharomyces Ku70, Mre11/Rad50, and RPA Proteins Regulate Adaptation to G2/M Arrest after DNA Damage , 1998, Cell.

[37]  R. Kolodner,et al.  Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. , 1998, Molecular cell.

[38]  John R Yates,et al.  The hMre11/hRad50 Protein Complex and Nijmegen Breakage Syndrome: Linkage of Double-Strand Break Repair to the Cellular DNA Damage Response , 1998, Cell.

[39]  S. Jackson,et al.  Components of the Ku‐dependent non‐homologous end‐joining pathway are involved in telomeric length maintenance and telomeric silencing , 1998, The EMBO journal.

[40]  S. Jackson,et al.  Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double‐strand break repair , 1997, The EMBO journal.

[41]  T R Hughes,et al.  Reverse transcriptase motifs in the catalytic subunit of telomerase. , 1997, Science.

[42]  J. Haber,et al.  Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks , 1996, Nature.

[43]  A. Gabriel,et al.  Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks , 1996, Nature.

[44]  S. Jin,et al.  Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae , 1996, Molecular and cellular biology.

[45]  J. Haber,et al.  Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Kolodner,et al.  Biochemistry and genetics of eukaryotic mismatch repair. , 1996, Genes & development.

[47]  J. Haber,et al.  Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae , 1996, Molecular and cellular biology.

[48]  H. Ikeda,et al.  Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. , 1996, Genetics.

[49]  M. Lovett,et al.  A single ataxia telangiectasia gene with a product similar to PI-3 kinase. , 1995, Science.

[50]  J. Haber,et al.  Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events , 1994, Molecular and cellular biology.

[51]  L. Loeb,et al.  Mutator phenotype may be required for multistage carcinogenesis. , 1991, Cancer research.

[52]  J. Haber,et al.  Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. , 1990, The EMBO journal.

[53]  B. Shafer,et al.  Analysis of the HO-cleaved MAT DNA intermediate generated during the mating type switch in the yeast Saccharomyces cerevisiae. , 1989, Molecular & general genetics : MGG.

[54]  J. Haber,et al.  Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. , 1989, Genetics.

[55]  J. Nickoloff,et al.  Double-strand breaks stimulate alternative mechanisms of recombination repair. , 1989, Journal of molecular biology.

[56]  J. Haber,et al.  Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences , 1988, Molecular and cellular biology.

[57]  J. Haber,et al.  Physical monitoring of mating type switching in Saccharomyces cerevisiae , 1988, Molecular and cellular biology.

[58]  E. Chen,et al.  A 24-base-pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[59]  G. Sega A review of the genetic effects of ethyl methanesulfonate. , 1984, Mutation research.

[60]  K. Shinohara,et al.  Therapy-Related Myelodysplastic Syndrome in a Case of Cutaneous Adult T-Cell Lymphoma , 2002, International journal of hematology.

[61]  F. Praz,et al.  DNA mismatch repair defects: role in colorectal carcinogenesis. , 2002, Biochimie.

[62]  C. Rudin,et al.  Mobile Genetic Element Activation and Genotoxic Cancer Therapy , 2002, American journal of pharmacogenomics : genomics-related research in drug development and clinical practice.

[63]  R. Kolodner,et al.  SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination , 2001, Nature Genetics.

[64]  Seth M. Cohen,et al.  Cisplatin: from DNA damage to cancer chemotherapy. , 2001, Progress in nucleic acid research and molecular biology.

[65]  V. Murray A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents. , 1999, Progress in nucleic acid research and molecular biology.

[66]  I. Hickson,et al.  Genetic disorders associated with cancer predisposition and genomic instability. , 1999, Progress in nucleic acid research and molecular biology.

[67]  B. Vogelstein,et al.  Landscaping the cancer terrain. , 1998, Science.

[68]  L. Hartwell,et al.  RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. , 1997, Genetics.