Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller

This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.

[1]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[2]  N. Laskin Fractional market dynamics , 2000 .

[3]  H. Momeni,et al.  Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty , 2012 .

[4]  Maciej Ogorzalek,et al.  Global relative parameter sensitivities of the feed-forward loops in genetic networks , 2012, Neurocomputing.

[5]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[8]  张彦斌,et al.  A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system , 2011 .

[9]  Zhang Qing-ling,et al.  Synchronization of spatiotemporal chaos in a class of complex dynamical networks , 2011 .

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  M. Ezzat Theory of fractional order in generalized thermoelectric MHD , 2011 .

[12]  Zheng-Ming Ge,et al.  Chaos in a fractional order modified Duffing system , 2007 .

[13]  Sha Wang,et al.  Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions , 2012 .

[14]  Yang Chi-Ching,et al.  One input control for exponential synchronization in generalized Lorenz systems with uncertain parameters , 2012 .

[15]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[16]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[17]  En-Zeng Dong,et al.  Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system , 2012 .

[18]  王京,et al.  Synchronization of hyperchaotic Chen systems: a class of the adaptive control approach , 2010 .

[19]  Wei Xiang,et al.  Robust synchronization of a class of chaotic systems with disturbance estimation , 2011 .

[20]  Ji Yang,et al.  Complete synchronization of double-delayed Rössler systems with uncertain parameters , 2011 .

[21]  Qigui Yang,et al.  Chaos in fractional conjugate Lorenz system and its scaling attractors , 2010 .

[22]  Junan Lu,et al.  Structure identification of uncertain general complex dynamical networks with time delay , 2009, Autom..

[23]  贾立新,et al.  Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems , 2010 .

[24]  Guanrong Chen,et al.  Does the eigenratio λ 2 /λ N represent the synchronizability of a complex network? , 2012 .

[25]  Wang Qiao,et al.  Comparison between two different sliding mode controllers for a fractional-order unified chaotic system , 2011 .

[26]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[27]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[28]  J. Saeidian,et al.  Comments on "R.A. Van Gorder and K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 4078-4089" , 2012 .

[29]  Junan Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2006, IEEE Transactions on Automatic Control.

[30]  Zhang Ruo-Xun,et al.  Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems , 2012 .

[31]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[32]  Hao Zhu,et al.  Chaos and synchronization of the fractional-order Chua’s system , 2009 .

[33]  Guan Xinping,et al.  Communication Scheme via Cascade Chaotic Systems , 2004 .

[34]  Changpin Li,et al.  The synchronization of three fractional differential systems , 2007 .

[35]  Ruoxun Zhang,et al.  Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations , 2012 .

[36]  Ping Zhou,et al.  Adaptive function projective synchronization between different fractional-order chaotic systems , 2012 .

[37]  Hölder continuity of generalized chaos synchronization in complex networks , 2011 .

[38]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[39]  Vasily E. Tarasov,et al.  FRACTIONAL DERIVATIVE AS FRACTIONAL POWER OF DERIVATIVE , 2007, 0711.2567.

[40]  Shouming Zhong,et al.  Design of sliding mode controller for a class of fractional-order chaotic systems , 2012 .

[41]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[42]  Xiaona Song,et al.  Image encryption based on a delayed fractional-order chaotic logistic system , 2012 .

[43]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[44]  Zhu Keqin,et al.  Mechanical Analogies of Fractional Elements , 2009 .

[45]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[46]  Vahid Johari Majd,et al.  A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization , 2011 .

[47]  Xinghuo Yu,et al.  Terminal sliding mode control of MIMO linear systems , 1997 .

[48]  余淼,et al.  Modified impulsive synchronization of fractional order hyperchaotic systems , 2011 .

[49]  M. Zak Terminal attractors for addressable memory in neural networks , 1988 .

[50]  Xiao Di,et al.  Multidimensional Z-Matrix with Control Parameters and Its Applications in Image Encryption , 2009 .

[51]  Daizhan Cheng,et al.  Characterizing the synchronizability of small-world dynamical networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.