Surface Location Error and Surface Roughness for Period-N Milling Bifurcations

This paper provides time domain simulation and experimental results for surface location error (SLE) and surface roughness when machining under both stable (forced vibration) and unstable (period-2 bifurcation) conditions. It is shown that the surface location error follows similar trends observed for forced vibration, so zero or low error conditions may be selected even for period-2 bifurcation behavior. The surface roughness for the period2 instability is larger than for stable conditions because the surface is defined by every other tooth passage and the apparent feed per tooth is increased. Good agreement is observed between simulation and experiment for stability, surface location error, and surface roughness results. [DOI: 10.1115/1.4035371]

[1]  M. Movahhedy,et al.  Bifurcation analysis of nonlinear milling process with tool wear and process damping: Sub-harmonic resonance under regenerative chatter , 2014 .

[2]  Gábor Stépán,et al.  Multiple chatter frequencies in milling processes , 2003 .

[3]  Zoltan Dombovari,et al.  On the bistable zone of milling processes , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  J.M.T. Thompson,et al.  Chaotic dynamics and fractals , 1987 .

[5]  Lakhtakia,et al.  Analysis of sensor signals shows turning on a lathe exhibits low-dimensional chaos. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  R. Sridhar,et al.  A Stability Algorithm for the General Milling Process: Contribution to Machine Tool Chatter Research—7 , 1968 .

[7]  Brian P. Mann,et al.  Milling Bifurcations from Structural Asymmetry and Nonlinear Regeneration , 2005 .

[8]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[9]  R. Sridhar,et al.  A Stability Algorithm for a Special Case of the Milling Process: Contribution to Machine Tool Chatter Research—6 , 1968 .

[10]  Tony L. Schmitz,et al.  The Extended Milling Bifurcation Diagram , 2015 .

[11]  T. Schmitz,et al.  Closed-form solutions for surface location error in milling , 2006 .

[12]  Jokin Munoa,et al.  Experimental validation of appropriate axial immersions for helical mills , 2015, The International Journal of Advanced Manufacturing Technology.

[13]  R N Arnold,et al.  Cutting Tools Research: Report of Subcommittee on Carbide Tools: The Mechanism of Tool Vibration in the Cutting of Steel , 1946 .

[14]  J. Tlustý,et al.  Special Aspects of Chatter in Milling , 1983 .

[15]  Brian P. Mann,et al.  Uncharted islands of chatter instability in milling , 2008 .

[16]  B. Mann,et al.  Limit cycles, bifurcations, and accuracy of the milling process , 2004 .

[17]  T. Insperger,et al.  Unstable Islands in the Stability Chart of Milling Processes Due to the Helix Angle , 2006 .

[18]  Jon R. Pratt,et al.  Stability Prediction for Low Radial Immersion Milling , 2002 .

[19]  Tony L. Schmitz,et al.  A Numerical and Experimental Investigation of Period-n Bifurcations in Milling , 2017 .

[20]  F. Moon,et al.  Nonlinear models for complex dynamics in cutting materials , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Y. S. Tarng,et al.  A mechanistic model for prediction of the dynamics of cutting forces in helical end milling , 1994 .

[22]  John W. Sutherland,et al.  An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems , 1986 .

[23]  Dong-Woo Cho,et al.  Development of a virtual machining system, part 2: prediction and analysis of a machined surface error , 2002 .

[24]  Yusuf Altintas,et al.  Dynamic peripheral milling of flexible structures , 1992 .

[25]  Jon R. Pratt,et al.  The Stability of Low Radial Immersion Milling , 2000 .

[26]  R. Sridhar,et al.  A General Formulation of the Milling Process Equation: Contribution to Machine Tool Chatter Research—5 , 1968 .

[27]  J. Agapiou,et al.  Machining Dynamics , 2018, Metal Cutting Theory and Practice.

[28]  Balakumar Balachandran,et al.  Dynamics and stability of milling process , 2001 .

[29]  Gábor Stépán,et al.  Nonlinear Dynamics of High-Speed Milling—Analyses, Numerics, and Experiments , 2005 .

[30]  S. A. Tobias,et al.  The Chatter of Lathe Tools Under Orthogonal Cutting Conditions , 1958, Journal of Fluids Engineering.

[31]  Tony L. Schmitz,et al.  Runout effects in milling: Surface finish, surface location error, and stability , 2007 .

[32]  Gábor Stépán,et al.  Vibration Frequencies in High-Speed Milling Processes or a Positive Answer to Davies, Pratt, Dutterer and Burns , 2004 .

[33]  Berend Denkena,et al.  Virtual process systems for part machining operations , 2014 .

[34]  Jon R. Pratt,et al.  On the Dynamics of High-Speed Milling with Long, Slender Endmills , 1998 .

[35]  Tony L. Schmitz,et al.  A new tunable dynamics platform for milling experiments , 2016 .

[36]  S. Smith,et al.  An Overview of Modeling and Simulation of the Milling Process , 1991 .

[37]  Gábor Stépán,et al.  Stability of up-milling and down-milling, part 2: experimental verification , 2003 .

[38]  T. Schmitz,et al.  Machining Dynamics: Frequency Response to Improved Productivity , 2008 .

[39]  Yusuf Altintas,et al.  Mechanism of Cutting Force and Surface Generation in Dynamic Milling , 1991 .

[40]  I. E. Minis,et al.  A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling , 1993 .

[41]  J. Tlusty,et al.  Basic Non-Linearity in Machining Chatter , 1981 .

[42]  Richard E. DeVor,et al.  The prediction of cutting forces in end milling with application to cornering cuts , 1982 .

[43]  S. A. Tobias Machine-tool vibration , 1965 .

[44]  Gábor Stépán,et al.  On stability prediction for milling , 2005 .

[45]  W. Kline,et al.  The Prediction of Surface Accuracy in End Milling , 1982 .

[46]  J. Tlusty,et al.  Dynamics of High-Speed Milling , 1986 .

[47]  Etsuo Marui,et al.  Chatter Vibration of Lathe Tools. Part 1: General Characteristics of Chatter Vibration , 1983 .

[48]  T. Insperger,et al.  Analysis of the Influence of Mill Helix Angle on Chatter Stability , 2006 .

[49]  H. E. Merritt Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research—1 , 1965 .

[50]  S. A. Tobias,et al.  A Theory of Nonlinear Regenerative Chatter , 1974 .

[51]  Gábor Stépán,et al.  On Stability and Dynamics of Milling at Small Radial Immersion , 2005 .

[52]  Tony L. Schmitz,et al.  Examination of surface location error due to phasing of cutter vibrations , 1999 .

[53]  Yusuf Altintas,et al.  An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions , 2003 .

[54]  Francis C. Moon,et al.  Dynamics and chaos in manufacturing processes , 1998 .

[55]  Yusuf Altintas,et al.  Multi frequency solution of chatter stability for low immersion milling , 2004 .

[56]  Gábor Stépán,et al.  Stability of up-milling and down-milling, part 1: alternative analytical methods , 2003 .