Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)

Abstract Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS 14 C], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [ 230 Th/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground ice and sediments of unit C. Pollen data show that spruce forests and wetlands dominated the area. The macrofossil remains of Picea , Larix, and Alnus incana ssp. tenuifolia also prove the existence of boreal coniferous forests during the mid-Wisconsin interstadial, which were replaced by treeless tundra-steppe vegetation during the late Wisconsin stadial. Unit C is discordantly overlain by the 2-m-thick late Holocene deposits of unit D. The pollen record of unit D indicates boreal forest vegetation similar to the modern one. The permafrost record from the Vault Creek tunnel reflects more than 90 ka of periglacial landscape dynamics triggered by fluvial and eolian accumulation, and formation of ice-wedge polygons and post-depositional deformation by slope processes. The record represents a typical Wisconsin valley-bottom facies in Central Alaska.

[1]  John P. Smol,et al.  Tracking environmental change using lake sediments. Volume 3: Terrestrial, algal, and siliceous indicators. , 2001 .

[2]  C. Scrimgeour,et al.  Soil Sampling and Methods of Analysis (Second Edition) . Edited by M. R. Carter and E. G. Gregorich. Boca Raton, Fl, USA: CRC Press (2008), pp. 1224, £85.00. ISBN-13: 978-0-8593-3586-0. , 2008, Experimental Agriculture.

[3]  D. Froese,et al.  Vegetation buried under Dawson tephra (25,300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon, Canada , 2006 .

[4]  H. Meyer,et al.  Isotope Studies of Hydrogen and Oxygen in Ground Ice - Experiences with the Equilibration Technique , 2000, Isotopes in environmental and health studies.

[5]  P. Tarasov,et al.  Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the Last Interglacial , 2011 .

[6]  D. Froese,et al.  Age and significance of the Late Pleistocene Dawson tephra in eastern Beringia , 2002 .

[7]  Paul F. Green,et al.  Estimating the component ages in a finite mixture , 1990 .

[8]  T. Stafford,et al.  Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol sequences of the Last Interglacial-Glacial cycle in central Alaska , 2003 .

[9]  J. Brigham‐Grette,et al.  The last interglaciation in Alaska: Stratigraphy and paleoecology of potential sites , 1991 .

[10]  G. Zazula,et al.  The detailed palaeoecology of a mid‐Wisconsinan interstadial (ca. 32 000 14C a BP) vegetation surface from interior Alaska , 2011 .

[11]  A. Brauer,et al.  Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland) , 2016 .

[12]  Sebastian Kreutzer,et al.  Introducing an R package for luminescence dating analysis , 2012 .

[13]  P. Sellmann GEOLOGY OF THE USA CRREL PERMAFROST TUNNEL FAIRBANKS, ALASKA , 1967 .

[14]  G. Grosse,et al.  Continental climate in the East Siberian Arctic during the last interglacial: Implications from palaeobotanical records , 2008 .

[15]  G. Grosse,et al.  Thermokarst-lake methanogenesis along a complete talik profile , 2015 .

[16]  J. Budahn,et al.  Paleoclimatic Significance of Chemical Weathering in Loess-Derived Paleosols of Subarctic Central Alaska , 2008 .

[17]  Daniel C. Fortier,et al.  Biogeochemical and geocryological characteristics of wedge and thermokarst‐cave ice in the CRREL permafrost tunnel, Alaska , 2011 .

[18]  Y. Shur,et al.  Late-Pleistocene Syngenetic Permafrost in the CRREL Permafrost Tunnel, Fox, Alaska , 2008 .

[19]  J. Stockmarr Tablets with spores used in absolute pollen analysis , 1971 .

[20]  J. Janssens,et al.  Paleoecology of the Boutellier Nonglacial Interval, St. Elias Mountains, Yukon Territory, Canada , 1980 .

[21]  N. Bigelow POLLEN RECORDS, LATE PLEISTOCENE | Northern North America , 2007 .

[22]  Mikhail Kanevskiy,et al.  Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure , 2011, Quaternary Research.

[23]  Martin Jakobsson,et al.  Late quaternary ice sheet history of northern Eurasia , 2004 .

[24]  H. Meyer,et al.  Eemian and Late Glacial/Holocene palaeoenvironmental records from permafrost sequences at the Dmitry Laptev Strait (NE Siberia, Russia) , 2009 .

[25]  J. V. Matthews Wisconsin Environment of Interior Alaska: Pollen and Macrofossil Analysis of a 27 Meter Core from the Isabella Basin (Fairbanks, Alaska) , 1974 .

[26]  Y. Shur,et al.  Syngenetic permafrost growth: cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska , 2004 .

[27]  David A. Green,et al.  A Catalogue of , 2009 .

[28]  J. Beget Continuous Late Quaternary proxy climate records from loess in Beringia , 2001 .

[29]  P. Grootes,et al.  The Leibniz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany , 1997 .

[30]  Jerry Brown,et al.  Lateglacial and Holocene isotopic and environmental history of northern coastal Alaska – Results from a buried ice-wedge system at Barrow , 2010 .

[31]  C. Schweger,et al.  The last (Koy-Yukon) interglaciation in the Yukon: Comparisons with holocene and interstadial pollen records , 1991 .

[32]  T. Péwé,et al.  Quaternary geology of Alaska , 1975 .

[33]  Neda Perunovi,et al.  Please cite this article: SALIVARY AND PLASMA INFLAMMATORY MEDIATORS AND SECRETORY STATUS IN PRETERM DELIVERY WOMEN WITH PERIODONTITIS – A CROSS SECTIONAL STUDY SALIVARNI I INFLAMATORNI MEDIJATORI PLAZME I SEKRETORNI STATUS KOD PREVREMENOG POROĐAJA ŽENA SA PERIODONTITISOM – STUDIJA PRESEKA , 2018 .

[34]  J. Hoefs Stable Isotope Geochemistry , 1973 .

[35]  H. Meyer,et al.  Paleoclimate studies on Bykovsky Peninsula, North Siberia - hydrogen and oxygen isotopes in ground ice , 2002 .

[36]  T. Hamilton,et al.  Interglacial Extension of the Boreal Forest Limit in the Noatak Valley, Northwest Alaska: Evidence from an Exhumed River-Cut Bluff and Debris Apron , 2003 .

[37]  H. Schwarcz,et al.  Dirty calcites 1. Uranium-series dating of contaminated calcite using leachates alone , 1989 .

[38]  A. Ganopolski,et al.  Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records , 2011 .

[39]  D. Froese,et al.  Identification of last interglacial deposits in eastern Beringia: a cautionary note from the Palisades, interior Alaska , 2011 .

[40]  T. Ku,et al.  The dating of impure carbonates with decay-series isotopes , 1984 .

[41]  P. Grootes,et al.  14C-AMS at the Leibniz-Labor: radiometric dating and isotope research , 2004 .

[42]  H. Hubberten,et al.  The periglacial climate and environment in northern Eurasia during the last glaciation and the Holocene , 2004 .

[43]  A. Lozhkin,et al.  The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations , 2001 .

[44]  J. Brigham‐Grette New perspectives on Beringian Quaternary paleogeography, stratigraphy, and glacial history , 2001 .

[45]  G. Berger Luminescence chronology of late Pleistocene loess-paleosol and tephra sequences near Fairbanks, Alaska , 2003, Quaternary Research.

[46]  G. Tucker,et al.  Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits , 2007 .

[47]  L. Arnold,et al.  Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose , 2006 .

[48]  D. Froese,et al.  Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada , 2006 .

[49]  Guido Grosse,et al.  Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands – A review , 2011 .

[50]  C. Griffing Pleistocene climate in Alaska from stable isotopes in an ice wedge , 2011 .

[51]  H. Meyer,et al.  Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic) , 2016 .

[52]  B. Diekmann,et al.  Quartz weathering in freeze–thaw cycles: experiment and application to the el'gygytgyn crater lake record for tracing siberian permafrost history , 2012 .

[53]  M. Geyh,et al.  230Th/U Dating of Frozen Peat, Bol'shoy Lyakhovsky Island (Northern Siberia) , 2002, Quaternary Research.

[54]  Guido Grosse,et al.  PERMAFROST AND PERIGLACIAL FEATURES | Yedoma: Late Pleistocene Ice-Rich Syngenetic Permafrost of Beringia , 2012 .

[55]  P. Gibbard,et al.  The extent and chronology of Cenozoic Global Glaciation , 2007 .

[56]  Eric Hultén,et al.  Outline of the history of arctic and boreal biota during the Quaternary period , 1937 .

[57]  H. Meyer,et al.  Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia , 2008 .

[58]  D. Froese,et al.  A late-Middle Pleistocene (Marine Isotope Stage 6) vegetated surface buried by Old Crow tephra at the Palisades, interior Alaska , 2010 .

[59]  H. Meyer,et al.  Palaeoclimate reconstruction on Big Lyakhovsky Island, north Siberia—hydrogen and oxygen isotopes in ice wedges , 2002 .

[60]  M. Lachniet,et al.  Revised 14C dating of ice wedge growth in interior Alaska (USA) to MIS 2 reveals cold paleoclimate and carbon recycling in ancient permafrost terrain , 2012, Quaternary Research.

[61]  P. Grootes,et al.  Sample Throughput and Data Quality at the Leibniz-Labor AMS Facility , 1997, Radiocarbon.

[62]  D. Froese,et al.  A catalogue of late Cenozoic tephra beds in the Klondike goldfields and adjacent areas, Yukon Territory , 2011 .

[63]  E. Pfeiffer,et al.  Carbon in tundra soils in the Lake Labaz region of arctic Siberia , 2007 .

[64]  M. Bateman Luminescence dating of periglacial sediments and structures , 2008 .

[65]  J. Janssens,et al.  The Last (Koy-Yukon) Interglaciation in the Northern Yukon: Evidence from Unit 4 at Ch’ijee’s Bluff, Bluefish Basin , 2007 .

[66]  Hugh M. French,et al.  The principles of cryostratigraphy. , 2010 .

[67]  S. Preece,et al.  Dawson tephra: a prominent stratigraphic marker of Late Wisconsinan age in west-central Yukon, Canada , 2000 .

[68]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[69]  B. Geel Non-Pollen Palynomorphs , 2002 .

[70]  D. Froese,et al.  OSL dating of loess deposits bracketing Sheep Creek tephra beds, northwest Canada: dim and problematic single-grain OSL characteristics and their effect on multi-grain age estimates , 2013 .

[71]  PLANT MACROFOSSIL RECORDS | Arctic North America , 2007 .

[72]  G. Laslett,et al.  OPTICAL DATING OF SINGLE AND MULTIPLE GRAINS OF QUARTZ FROM JINMIUM ROCK SHELTER, NORTHERN AUSTRALIA: PART I, EXPERIMENTAL DESIGN AND STATISTICAL MODELS* , 1999 .

[73]  L. Owen,et al.  Luminescence dating of glacial and associated sediments: review, recommendations and future directions , 2008 .

[74]  D. Froese,et al.  An extensive middle to late Pleistocene tephrochronologic record from east-central Alaska , 2008 .

[75]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.

[76]  Kenji Yoshikawa,et al.  Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska , 2003 .

[77]  K. Yoshikawa,et al.  The Vault Creek Tunnel (Fairbanks Region, Alaska) A Late Quaternary Palaeoenvironmental Permafrost Record , 2008 .

[78]  J. Suc,et al.  Pollen et spores d'europe et d'afrique du nord , 1996 .

[79]  E. Willerslev,et al.  Optical dating of perennially frozen deposits associated with preserved ancient plant and animal DNA in north-central Siberia , 2008 .

[80]  F. Lehmkuhl,et al.  An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China , 2012 .

[81]  A. Thomas,et al.  Quaternary palynology and vegetational history of Alaska , 1985 .

[82]  T. Hamilton,et al.  The Fox permafrost tunnel: A late Quaternary geologic record in central Alaska , 1988 .

[83]  D. Froese,et al.  Early Wisconsinan (MIS 4) Arctic ground squirrel middens and a squirrel-eye-view of the mammoth-steppe , 2011 .

[84]  J. Beget Middle Wisconsinan Climate Fluctuations Recorded in Central Alaskan Loess , 2007 .

[85]  H. Meyer,et al.  Ice Complex formation in arctic East Siberia during the MIS3 Interstadial , 2014 .

[86]  M. Werner,et al.  Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene , 2015 .

[87]  G. Weltje End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem , 1997 .

[88]  I. Clark,et al.  Investigation of ice‐wedge infilling processes using stable oxygen and hydrogen isotopes, crystallography and occluded gases (O2, N2, Ar) , 2011 .

[89]  J. Jouzel,et al.  Global Climatic Interpretation of the Deuterium-Oxygen 18 Relationship , 1979 .

[90]  J. Beget,et al.  Vegetation and paleoclimate of the last interglacial period, central Alaska , 2001 .

[91]  W. Wright The “Quaternary” Period , 1907, Nature.

[92]  T. Péwé,et al.  A 3 M.Y. Record of Pliocene-Pleistocene Loess in Interior Alaska , 1990 .

[93]  L. Arnold,et al.  Stochastic modelling of multi-grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures , 2009 .

[94]  D. Froese,et al.  Changing ideas on the identity and stratigraphic significance of the Sheep Creek tephra beds in Alaska and the Yukon Territory, northwestern North America , 2008 .

[95]  Hanno Meyer,et al.  Eastern Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada , 2012 .

[96]  A. Murray,et al.  Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol , 2000 .

[97]  D. Froese,et al.  The Kamikatsura event in the Gold Hill loess, Alaska , 2011 .

[98]  A. Bobrov,et al.  Testate amoebae (Protozoa: Testacea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia , 2004 .

[99]  A. Gillespie,et al.  The Quaternary Period in the United States , 2006 .

[100]  W. Punt,et al.  Pollen et spores d'Europe et d'Afrique du nord. Supplement 1 , 1997 .

[101]  Duane G. Froese,et al.  Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska , 2010 .

[102]  Hans-Jürgen Beug,et al.  Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete , 1961 .

[103]  D. Froese,et al.  The variegated (VT) tephra: A new regional marker for middle to late marine isotope stage 5 across Yukon and Alaska , 2011 .

[104]  G. Grosse,et al.  The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska , 2013, Geophysical research letters.

[105]  H. Meyer,et al.  Palaeoclimatic information from stable water isotopes of Holocene ice wedges on the Dmitrii Laptev Strait, northeast Siberia, Russia , 2011 .