Titanium dioxide nanomaterials for sensor applications.

[1]  Maoqing Li,et al.  An investigation of response time of TiO2 thin-film oxygen sensors , 1996 .

[2]  Shouzhuo Yao,et al.  Photoelectrochemical detection of pentachlorophenol with a multiple hybrid CdSe(x)Te(1-x)/TiO2 nanotube structure-based label-free immunosensor. , 2010, Analytical chemistry.

[3]  Yang Li,et al.  Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite. , 2009, Biosensors & bioelectronics.

[4]  Weidong Yu,et al.  Sol–gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays , 2006, Nanotechnology.

[5]  H. Ju,et al.  Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol–gel film , 2003 .

[6]  G. Neri,et al.  Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites , 2012 .

[7]  H. Hahn,et al.  Nanocrystalline Titania Films and Particles by Chemical Vapor Synthesis , 2000 .

[8]  J. Wu,et al.  Thermal evaporation growth and the luminescence property of TiO2 nanowires , 2005 .

[9]  B. Yadav,et al.  Optical humidity sensors based on titania films fabricated by sol–gel and thermal evaporation methods , 2006 .

[10]  Kouji Yasuda,et al.  Electrochemical formation of self-organized zirconium titanate nanotube multilayers , 2007 .

[11]  S. Ahmadi,et al.  The effect of highly ordered titania nanotube structures on hydrogen gas detection , 2012 .

[12]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[13]  Wensheng Yang,et al.  Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor. , 2011, Biomaterials.

[14]  Hui Jiang,et al.  Photoelectrocatalytic oxidation of glutathione based on porous TiO2-Pt nanowhiskers. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[15]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[16]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[17]  T. Pan,et al.  A TiO2/Er2O3 stacked electrolyte/insulator/semiconductor film pH-sensor for the detection of urea , 2009 .

[18]  Guohua Zhao,et al.  Growth and Favorable Bioelectrocatalysis of Multishaped Nanocrystal Au in Vertically Aligned TiO2 Nanotubes for Hemoprotein , 2008 .

[19]  Jin Zhai,et al.  The fabrication and switchable superhydrophobicity of TiO2 nanorod films. , 2005, Angewandte Chemie.

[20]  Xiaogan Li,et al.  Hierarchical structured TiO2 nano-tubes for formaldehyde sensing , 2012 .

[21]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[22]  I. Karube,et al.  Disposable Chemical Oxygen Demand Sensor Using a Microfabricated Clark‐Type Oxygen Electrode with a TiO2 Suspension Solution , 2000 .

[23]  Mahiko Nagao,et al.  Relation between the amounts of chemisorbed and physisorbed water on metal oxides , 1969 .

[24]  Yan Qiao,et al.  New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications , 2008 .

[25]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[26]  Yong‐Mook Kang,et al.  Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. , 2011, Journal of the American Chemical Society.

[27]  Huijun Zhao,et al.  Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell , 2004 .

[28]  G. Luo,et al.  Amperometric Detection of Glucose with Glucose Oxidase Absorbed on Porous Nanocrystalline TiO2 Film , 2001 .

[29]  K. Jiao,et al.  Nano Au/TiO2 hollow microsphere membranes for the improved sensitivity of detecting specific DNA sequences related to transgenes in transgenic plants , 2008 .

[30]  Xiaogan Li,et al.  Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination , 2013 .

[31]  J. Chou,et al.  Sensing Properties and Stability Analysis of Miniaturized Dual-Mode Uric Acid Biosensor Based on TiO 2 Extended Gate Field Effect Transistor , 2008 .

[32]  Xin Xin,et al.  A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film. , 2011, Biosensors & bioelectronics.

[33]  S. Bell,et al.  Quantitative surface-enhanced Raman spectroscopy. , 2008, Chemical Society reviews.

[34]  J. Macák,et al.  Self-organization of anodic nanotubes on two size scales. , 2006, Small.

[35]  Wei Sun,et al.  Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis. , 2013, Biosensors & bioelectronics.

[36]  Makoto Egashira,et al.  Synthesis of mesoporous TiO2-based powders and their gas-sensing properties , 2002 .

[37]  Jinghua Yu,et al.  Highly sensitive chemiluminescence immunoassay on chitosan membrane modified paper platform using TiO2 nanoparticles/multiwalled carbon nanotubes as label. , 2013, Luminescence : the journal of biological and chemical luminescence.

[38]  Weng-Sing Hwang,et al.  Substrate effects on the oxygen gas sensing properties of SnO2/TiO2 thin films , 2006 .

[39]  Rong Wang,et al.  A Novel Amperometric O2 Gas Sensor Based on Supported Room‐Temperature Ionic Liquid Porous Polyethylene Membrane‐Coated Electrodes , 2004 .

[40]  Y Kurokawa,et al.  Immobilization of enzyme onto cellulose-titanium oxide composite fiber. , 1993, Biotechnology and bioengineering.

[41]  J. Ruzicka,et al.  Flow injection analyses , 1975 .

[42]  I. Karube,et al.  Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode , 1999 .

[43]  Xudong Wang,et al.  Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. , 2014, Nano letters.

[44]  Huijun Zhao,et al.  Nanostructured TiO2 photocatalysts for the determination of organic pollutants. , 2012, Journal of hazardous materials.

[45]  Isao Karube,et al.  A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen. , 2002, Analytical chemistry.

[46]  M. Sahimi,et al.  Oxygen sensor with solid-state CeO2–ZrO2–TiO2 reference , 2005 .

[47]  Chunzhong Li,et al.  A Glucose Biosensor Based on Immobilization of Glucose Oxidase into 3D Macroporous TiO2 , 2008 .

[48]  Vincenzo Guidi,et al.  Doping of a nanostructured titania thick film: structural and electrical investigations , 2000 .

[49]  Jih-Jen Wu,et al.  Aligned TiO2 Nanorods and Nanowalls , 2004 .

[50]  A. S. Zuruzi,et al.  Highly sensitive gas sensor based on integrated titania nanosponge arrays , 2006 .

[51]  Meicheng Yang,et al.  A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. , 2010, Chemistry.

[52]  Y. Wen,et al.  Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite. , 2010, Biosensors & bioelectronics.

[53]  Y. Chai,et al.  Glucose oxidase and ferrocene labels immobilized at Au/TiO₂ nanocomposites with high load amount and activity for sensitive immunoelectrochemical measurement of ProGRP biomarker. , 2011, Biosensors & bioelectronics.

[54]  K. Gray,et al.  A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interface , 2007 .

[55]  J. González,et al.  Transport properties of two finite armchair graphene nanoribbons , 2013, Nanoscale Research Letters.

[56]  Ying Sun,et al.  Surface plasmon resonance biosensor based on Au nanoparticle in titania sol-gel membrane. , 2010, Colloids and surfaces. B, Biointerfaces.

[57]  E. Suh,et al.  TiO2 thin film gas sensor for monitoring ammonia , 2007 .

[58]  Pedro M. Faia,et al.  Humidity sensing properties of a thick-film titania prepared by a slow spinning process , 2004 .

[59]  Q. Cai,et al.  Core/shellthick CdTe/CdS quantum dots functionalized TiO2 nanotube: A novel electrochemiluminescence platform for label-free immunosensor to detect tris-(2,3-dibromopropyl) isocyanurate in environment , 2014 .

[60]  Junsheng Yu,et al.  Self-assembly of TiO2/polypyrrole nanocomposite ultrathin films and application for an NH3 gas sensor , 2007 .

[61]  Bruce D. Hammock,et al.  Optimization and validation of an enzyme immunoassay for the insect growth regulator fenoxycarb , 2003 .

[62]  Ping Liu,et al.  Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension. , 2002, Journal of the American Chemical Society.

[63]  Feng Yan,et al.  The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. , 2010, Biosensors & bioelectronics.

[64]  Fan Yang,et al.  Electrochemiluminescence detection based on ruthenium(II) tris(bipyridine) immobilised in sulfonic-functionalised titania nanoparticles by ion exchange strategy. , 2009, The Analyst.

[65]  Yancai Li,et al.  A visible light assisted photocatalytic system for determination of chemical oxygen demand using 5-sulfosalicylic acid in situ surface modified titanium dioxide , 2013 .

[66]  J. Macák,et al.  Self-organized porous and tubular oxide layers on TiAl alloys , 2007 .

[67]  S. L. Patil,et al.  New Method for Fabrication of CSA Doped PANi- ${\rm TiO}_{2}$ Thin-Film Ammonia Sensor , 2011, IEEE Sensors Journal.

[68]  Huangxian Ju,et al.  Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO₂ nanoparticles. , 2010, Analytical chemistry.

[69]  Y. Chai,et al.  A new electrochemiluminescence immunosensor based on Ru(bpy)32+-doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin , 2010 .

[70]  Qingjiang Wang,et al.  Rapid detection of Escherichia coli by flow injection analysis coupled with amperometric method using an IrO2-Pd chemically modified electrode , 2007 .

[71]  Y. Xian,et al.  Photocatalytic Oxidation for Determination of Chemical Oxygen Demand Using Nano-TiO2 Film , 2005 .

[72]  Aicheng Chen,et al.  A novel amperometric biosensor for the detection of nitrophenol. , 2009, Talanta.

[73]  J. Xu,et al.  Direct electrochemistry of horseradish peroxidase on TiO(2) nanotube arrays via seeded-growth synthesis. , 2008, Biosensors & bioelectronics.

[74]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[75]  Z. Wen,et al.  Formaldehyde gas sensing property and mechanism of TiO2–Ag nanocomposite , 2010 .

[76]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[77]  John T Yates,et al.  Surface science studies of the photoactivation of TiO2--new photochemical processes. , 2006, Chemical reviews.

[78]  Silvana Andreescu,et al.  Mixed ceria-based metal oxides biosensor for operation in oxygen restrictive environments. , 2008, Analytical chemistry.

[79]  Y. Chai,et al.  An integrated sensing system for detection of cholesterol based on TiO₂-graphene-Pt-Pd hybrid nanocomposites. , 2013, Biosensors & bioelectronics.

[80]  Chih-Cheng Lu,et al.  A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask , 2010, Sensors.

[81]  James R. Mihelcic,et al.  Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals , 1999 .

[82]  Xuejin Li,et al.  TiO2 Nanotube Sensor for Online Chemical Oxygen Demand Determination in Conjunction with Flow Injection Technique , 2014, Water environment research : a research publication of the Water Environment Federation.

[83]  Haitao Huang,et al.  Bioelectrocatalytic application of titania nanotube array for molecule detection. , 2007, Biosensors & bioelectronics.

[84]  F. Marlow,et al.  Inverse Opals with a Skeleton Structure: Photonic Crystals with Two Complete Bandgaps , 2002 .

[85]  S. Cosnier,et al.  TiO2 nanocrystals electrochemiluminescence quenching by biological enlarged nanogold particles and its application for biosensing. , 2013, Biosensors & bioelectronics.

[86]  Makoto Egashira,et al.  H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode , 2003 .

[87]  Yang Li,et al.  An excellent room-temperature hydrogen sensor based on titania nanotube-arrays , 2012 .

[88]  Edward A. Jackson,et al.  Intense and Tunable Electrochemiluminescence of Corannulene , 2010 .

[89]  Xiaoling Yang,et al.  Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications , 2009 .

[90]  M. Maeda,et al.  The surface of TiO2 gate of 2DEG-FET in contact with electrolytes for bio sensing use , 2007 .

[91]  H. Craighead,et al.  Micro- and nanomechanical sensors for environmental, chemical, and biological detection. , 2007, Lab on a chip.

[92]  Galo J. A. A. Soler-Illia,et al.  Structure effects of self-assembled Prussian blue confined in highly organized mesoporous TiO2 on the electrocatalytic properties towards H2O2 detection. , 2010, Biosensors & bioelectronics.

[93]  S. K. Pradhan,et al.  Growth of TiO2 nanorods by metalorganic chemical vapor deposition , 2003 .

[94]  Alessandro Martucci,et al.  Gold Nanoparticle‐Doped TiO2 Semiconductor Thin Films: Gas Sensing Properties , 2008 .

[95]  Hongzhi Wang,et al.  TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelectrocatalysis , 2011 .

[96]  Michael J Sailor,et al.  A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. , 2010, ACS nano.

[97]  Aicheng Chen,et al.  Highly sensitive amperometric H2O2 biosensor based on hemoglobin modified TiO2 nanotubes , 2011 .

[98]  Hongzhi Wang,et al.  Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determination of chemical oxygen demand , 2012 .

[99]  D. Chan,et al.  Immunosensors--principles and applications to clinical chemistry. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[100]  Ching,et al.  Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. , 1995, Physical review. B, Condensed matter.

[101]  G Van Tendeloo,et al.  Carbon nanotube–TiO2 hybrid films for detecting traces of O2 , 2008, Nanotechnology.

[102]  Boran Cheng,et al.  Electrospun TiO2 Nanofiber‐Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients , 2012, Advanced materials.

[103]  Qin Xu,et al.  A derivative photoelectrochemical sensing platform for 4-nitrophenolate contained organophosphates pesticide based on carboxylated perylene sensitized nano-TiO2. , 2013, Analytica chimica acta.

[104]  Yanbiao Liu,et al.  Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor , 2012 .

[105]  Ho Won Jang,et al.  Highly sensitive CO sensors based on cross-linked TiO2 hollow hemispheres , 2010 .

[106]  Haibin Yang,et al.  Synthesis and characterization of TiO2 nanotubes for humidity sensing , 2008 .

[107]  Kun Wang,et al.  TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor. , 2011, The Analyst.

[108]  Ke‐long Huang,et al.  Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate , 2004 .

[109]  Yuan Yuan,et al.  Preparation of photocatalytic nano-ZnO/TiO(2) film and application for determination of chemical oxygen demand. , 2007, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[110]  S. Ai,et al.  Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2–K2Cr2O7 system , 2004 .

[111]  Zhongchang Wang,et al.  Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds , 2010 .

[112]  Xin Xu,et al.  TiO2 sol-gel derived amperometric biosensor for H2O2 on the electropolymerized phenazine methosulfate modified electrode , 2002, Analytical and bioanalytical chemistry.

[113]  Sheikh A. Akbar,et al.  TiO2–SnO2 nanostructures and their H2 sensing behavior , 2005 .

[114]  Ying Zhuo,et al.  Highly conducting gold nanoparticles-graphene nanohybrid films for ultrasensitive detection of carcinoembryonic antigen. , 2011, Talanta.

[115]  R. Pei,et al.  Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. , 2001, Biosensors & bioelectronics.

[116]  Ji-Young Jung,et al.  Characteristics of the TiO2/SnO2 Thick Film Semiconductor Gas Sensor to Determine Fish Freshness , 2008 .

[117]  Prabir K. Dutta,et al.  TiO2-based sensor arrays modeled with nonlinear regression analysis for simultaneously determining CO and O2 concentrations at high temperatures , 2002 .

[118]  T. Moritz,et al.  Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization , 1999 .

[119]  A. Manivannan,et al.  Shape-enhanced photocatalytic activity of single-crystalline anatase TiO(2) (101) nanobelts. , 2010, Journal of the American Chemical Society.

[120]  V. Lantto,et al.  TiO2 thick-film gas sensors and their suitability for NOx monitoring , 1993 .

[121]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[122]  P. Schmuki,et al.  Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. , 2008, Angewandte Chemie.

[123]  Wojtek Wlodarski,et al.  Gas Sensing Properties of P-type Semiconducting Cr-doped TiO2 Thin Films , 2002 .

[124]  Jung-Chuan Chou,et al.  Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system , 2010, Microelectron. Reliab..

[125]  Kiyoshi Toko,et al.  Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors. , 2010, Analytical chemistry.

[126]  M. C. Bhatnagar,et al.  Improvement of the oxygen gas sensitivity in doped TiO2 thick films , 1999 .

[127]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[128]  Jiaguo Yu,et al.  Preparation and characterization of super-hydrophilic porous TiO2 coating films , 2001 .

[129]  E. Llobet,et al.  Thick film titania sensors for detecting traces of oxygen , 2007 .

[130]  Andrew Mills,et al.  An overview of semiconductor photocatalysis , 1997 .

[131]  G. Shi,et al.  Determination of chemical oxygen demand using flow injection with Ti/TiO2 electrode prepared by laser anneal , 2007 .

[132]  R. S. Niranjan,et al.  Bilayered tin oxide:zirconia thin film as a humidity sensor , 2001 .

[133]  Wolfgang Göpel,et al.  SnO2 sensors: current status and future prospects☆ , 1995 .

[134]  K. Ho,et al.  Detection of nicotine based on molecularly imprinted TiO2-modified electrodes. , 2009, Analytica chimica acta.

[135]  Yong Li,et al.  Study on humidity sensing property based on TiO2 porous film and polystyrene sulfonic sodium , 2009 .

[136]  Kouji Yasuda,et al.  Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes , 2007 .

[137]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[138]  Ke-Jing Huang,et al.  Direct electrochemistry of glucose oxidase immobilized on TiO2–graphene/nickel oxide nanocomposite film and its application , 2012, Journal of Solid State Electrochemistry.

[139]  Zhengpeng Yang,et al.  Potentiometric urea biosensor based on immobilization of urease onto molecularly imprinted TiO2 film , 2009 .

[140]  Aicheng Chen,et al.  High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays , 2009 .

[141]  Feng Li,et al.  Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors , 2008, Nanotechnology.

[142]  Kouji Yasuda,et al.  Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals , 2007 .

[143]  Shen-ming Chen,et al.  Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors. , 2009, Talanta.

[144]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[145]  R. M. Walton,et al.  Resistance measurements of platinum-titania thin film gas detectors in ultra-high vacuum (UHV) and reactive ion etcher (RIE) systems , 1997 .

[146]  A. Poghossian,et al.  Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure , 1997 .

[147]  Huijun Zhao,et al.  A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters. , 2009, Environmental science & technology.

[148]  Yanbiao Liu,et al.  A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays , 2010 .

[149]  M. Wu,et al.  Effect of noble metal catalyst on titania exhaust gas oxygen sensor , 1993 .

[150]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[151]  L. Qi,et al.  Formation of crystalline nanosized titania in reverse micelles at room temperature , 2002 .

[152]  Wei Zheng,et al.  Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. , 2008, Journal of the American Chemical Society.

[153]  François Blais Review of 20 years of range sensor development , 2004, J. Electronic Imaging.

[154]  C. M. Li,et al.  Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor. , 2008, Biosensors & bioelectronics.

[155]  Dan Du,et al.  Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. , 2013, Biosensors & bioelectronics.

[156]  Nguyen Duc Thien,et al.  Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites , 2011, Sensors.

[157]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[158]  H. Chu,et al.  Structure and CO gas sensing properties of electrospun TiO2 nanofibers , 2010 .

[159]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[160]  Yang Liu,et al.  Self‐Organized TiO2 Nanotube Array Sensor for the Determination of Chemical Oxygen Demand , 2008 .

[161]  Martin Moskovits,et al.  Detection of CO and O2 Using Tin Oxide Nanowire Sensors , 2003 .

[162]  Kui Yao,et al.  Platinum-titania oxygen sensors and their sensing mechanisms , 1993 .

[163]  E. McCafferty,et al.  Adsorption of water vapour on α-Fe2O3 , 1971 .

[164]  Ho Won Jang,et al.  CO gas sensing properties of direct-patternable TiO2 thin films containing multi-wall carbon nanotubes , 2013 .

[165]  Yulin Deng,et al.  Ultrasensitive NH3 Gas Sensor from Polyaniline Nanograin Enchased TiO2 Fibers , 2010 .

[166]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[167]  J. Wu,et al.  Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation , 2005 .

[168]  Sugimoto,et al.  Synthetic of Uniform Spindle-Type Titania Particles by the Gel-Sol Method , 1997, Journal of colloid and interface science.

[169]  C. N. R. Rao,et al.  Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides , 2007 .

[170]  Y. Zhang,et al.  Field-emission properties of TiO2 nanowire arrays , 2005 .

[171]  Wojtek Wlodarski,et al.  Nanocrystalline V2O5–TiO2 thin-films for oxygen sensing prepared by sol–gel process , 2001 .

[172]  K. Yan,et al.  A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. , 2014, Biosensors & bioelectronics.

[173]  Dong-Wha Park,et al.  Humidity sensing properties of nanostructured- bilayered potassium tantalate: Titania films , 2005 .

[174]  Joan Ramon Morante,et al.  Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors , 2004 .

[175]  F. He,et al.  Detection of P. aeruginosa using nano-structured electrode-separated piezoelectric DNA biosensor. , 2004, Talanta.

[176]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[177]  Jing Cao,et al.  CdS nanocrystals functionalized TiO2 nanotube arrays: Novel electrochemiluminescence platforms for ultrasensitive immunosensors , 2012 .

[178]  D. Zhu,et al.  Improvement of piezoelectric crystal sensor for the detection of organic vapors using nanocrystalline TiO2 films , 2005 .

[179]  Andrei Ghicov,et al.  TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. , 2006, Angewandte Chemie.

[180]  S. V. Patel,et al.  Characteristics of silicon-micromachined gas sensors based on Pt/TiOx thin films , 1997 .

[181]  N. K. Meshkov,et al.  Detection and identification of gaseous organics using a TiO2 sensor , 2002 .

[182]  Q. Cai,et al.  Surface enhanced Raman scattering detecting polycyclic aromatic hydrocarbons with gold nanoparticle-modified TiO2 nanotube arrays , 2012 .

[183]  Ke Wang,et al.  A nano-TiO2 supported AuAg alloy nanocluster functionalized electrode for sensitizing the electrochemiluminescent analysis , 2013 .

[184]  Huanfen Yao,et al.  A contact lens with embedded sensor for monitoring tear glucose level. , 2011, Biosensors & bioelectronics.

[185]  S. K. Hazra,et al.  High sensitivity and fast response hydrogen sensors based on electrochemically etched porous titania thin films , 2006 .

[186]  Guiying Li,et al.  Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode , 2010 .

[187]  Qingyun Cai,et al.  An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite , 2009 .

[188]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[189]  Kengo Shimanoe,et al.  Cr-doped TiO2 gas sensor for exhaust NO2 monitoring , 2003 .

[190]  Murthy Chavali,et al.  Composite of TiO2 nanowires and Nafion as humidity sensor material , 2006 .

[191]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[192]  E. Wachsman,et al.  Titania‐Based Miniature Potentiometric Carbon Monoxide Gas Sensors with High Sensitivity , 2010 .

[193]  Aicheng Chen,et al.  Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone , 2004 .

[194]  S. Luo,et al.  Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO₂ nanotube array through fluorescence resonance energy transfer. , 2010, Environmental science & technology.

[195]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[196]  Weon-Pil Tai,et al.  Fabrication and humidity sensing properties of nanostructured TiO2-SnO2 thin films , 2002 .

[197]  C A Grimes,et al.  Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity. , 2000, Journal of applied physics.

[198]  Lixia Yang,et al.  An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array. , 2008, Bioelectrochemistry.

[199]  G. N. Chaudhari,et al.  Characterization of nanosized TiO2 based H2S gas sensor , 2006 .

[200]  Ruey-an Doong,et al.  Glutamate optical biosensor based on the immobilization of glutamate dehydrogenase in titanium dioxide sol-gel matrix. , 2006, Biosensors & bioelectronics.

[201]  J. Kong,et al.  TiO2-assisted silver enhanced biosensor for kinase activity profiling. , 2009, Chemical communications.

[202]  Won-Yong Lee,et al.  Amperometric glucose biosensor based on sol–gel-derived metal oxide/Nafion composite films , 2005 .

[203]  Keiichi Tanaka,et al.  Effect of crystallinity of TiO2 on its photocatalytic action , 1991 .

[204]  Jinghong Li,et al.  Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. , 2008, Biosensors & bioelectronics.

[205]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[206]  Xiuhua Wei,et al.  Development of a reagentless electrochemiluminescent electrode for flow injection analysis using copolymerised luminol/aniline on nano-TiO2 functionalised indium-tin oxide glass. , 2013, Talanta.

[207]  Chunzhong Li,et al.  Electrocatalytic activity of Pt doped TiO2 nanotubes catalysts for glucose determination , 2010 .

[208]  Andreas Schütze,et al.  Ozone detection in the ppb-range with improved stability and reduced cross sensitivity , 2008 .

[209]  Shuangxi Xing,et al.  Examining the use of TiO2 to enhance the NH3 sensitivity of polypyrrole films , 2010 .

[210]  Sheikh A. Akbar,et al.  A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays , 2011 .

[211]  O. Toft Sørensen,et al.  Oxygen sensors based on semiconducting metal oxides: an overview , 2000 .

[212]  Lin Gan,et al.  TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity , 2011 .

[213]  G. S. Wilson,et al.  Electrochemical biosensors: recommended definitions and classification. , 2001, Biosensors & bioelectronics.

[214]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[215]  L. Castañeda Effects of palladium coatings on oxygen sensors of titanium dioxide thin films , 2007 .

[216]  Aicheng Chen,et al.  A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. , 2008, Biosensors & bioelectronics.

[217]  Qin Xu,et al.  A novel photoelectrochemical sensor for the organophosphorus pesticide dichlofenthion based on nanometer-sized titania coupled with a screen-printed electrode. , 2011, Analytical chemistry.

[218]  Yi Hu,et al.  Phase transformation of precipitated TiO2 nanoparticles , 2003 .

[219]  Y. Fung,et al.  Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. , 2009, Biosensors & bioelectronics.

[220]  Electrochemiluminescent TiO2/CdS nanocomposites for efficient immunosensing of HepG2 cells. , 2013, Journal of materials chemistry. B.

[221]  Shaofang Li,et al.  A novel and sensitive formaldehyde gas sensor utilizing thermal desorption coupled with cataluminescence , 2010 .

[222]  Changsheng Xie,et al.  A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature , 2012 .

[223]  Peifang Wang,et al.  Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand. , 2013, Analytica chimica acta.

[224]  P. Su,et al.  Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films , 2007 .

[225]  Y. Lei,et al.  Pd/TiO2 Nanofibrous Membranes and Their Application in Hydrogen Sensing , 2009 .

[226]  J. Schwank,et al.  Adsorption-induced conductance changes of thin Pt films and PtPd/TiO2 gas sensors , 1987 .

[227]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[228]  W. Tai,et al.  Humidity sensitive properties of nanostructured Al-doped ZnO:TiO2 thin films , 2003 .

[229]  Hong-Ming Lin,et al.  Nanohybrid TiO2/carbon black sensor for NO2 gas , 2007 .

[230]  Yin Zhao,et al.  The sol–gel template synthesis of porous TiO2 for a high performance humidity sensor , 2011, Nanotechnology.

[231]  Marina E. Rincón,et al.  Sensor response of sol–gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating techniques , 2009 .

[232]  Tetsuya Kida,et al.  Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes , 2009 .

[233]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[234]  Shen-ming Chen,et al.  Multi-functionalized biosensor at WO3–TiO2 modified electrode for photoelectrocatalysis of norepinephrine and riboflavin , 2012 .

[235]  Jeong-Woo Choi,et al.  A glucose biosensor based on TiO2-Graphene composite. , 2012, Biosensors & bioelectronics.

[236]  J R Durrant,et al.  Protein Adsorption on Nanocrystalline TiO(2) Films:  An Immobilization Strategy for Bioanalytical Devices. , 1998, Analytical chemistry.

[237]  Maurizio Martino,et al.  Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation , 2007 .

[238]  Y. Xian,et al.  Determination of chemical oxygen demand values by a photocatalytic oxidation method using nano-TiO2 film on quartz. , 2006, Talanta.

[239]  P. Schmuki,et al.  TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications , 2013 .

[240]  M. Mendell,et al.  Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review. , 2007, Indoor air.

[241]  Sung-Hwan Han,et al.  Enhanced gas sensitivity in TiO2 nanoneedles grown on upright SnO2 nanoplates , 2013 .

[242]  G. L. Sharma,et al.  Mechanism in Nb doped titania oxygen gas sensor , 1998 .

[243]  Yu Lei,et al.  Preparation of TiO2-Pt hybrid nanofibers and their application for sensitive hydrazine detection. , 2011, Nanoscale.

[244]  A. Cornet,et al.  Transition metals (Co, Cu) as additives on hydrothermally treated Tio2 for gas sensing , 2005 .

[245]  Saurabh Srivastava,et al.  Mediator-free microfluidics biosensor based on titania–zirconia nanocomposite for urea detection , 2013 .

[246]  Jun-Jie Zhu,et al.  Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein. , 2012, Analytical chemistry.

[247]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[248]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[249]  Zhenyu Lin,et al.  TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen , 2008 .

[250]  N. Yang,et al.  Direct Electrochemistry of Hemoglobin on Vertically Aligned Carbon Hybrid TiO2 Nanotubes and Its Highly Sensitive Biosensor Performance , 2013 .

[251]  Yuming Cui,et al.  One-pot synthesis of α-Fe2O3 nanospheres by solvothermal method , 2013, Nanoscale Research Letters.

[252]  Zhaohui Li,et al.  Wide-range hydrogen sensing with Nb-doped TiO2 nanotubes , 2012, Nanotechnology.

[253]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[254]  J. Malherbe,et al.  Thin Solid Films , 2008 .

[255]  Fei Xiao,et al.  A novel biosensor based on photoelectro-synergistic catalysis for flow-injection analysis system/amperometric detection of organophosphorous pesticides. , 2009, Analytica chimica acta.

[256]  Tetsuya Kida,et al.  Microstructure control of TiO2 nanotubular films for improved VOC sensing , 2011 .

[257]  Il-Doo Kim,et al.  Pd-doped TiO2 nanofiber networks for gas sensor applications , 2010 .

[258]  J. Macák,et al.  Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization , 2006 .

[259]  Jianyong Yu,et al.  Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor , 2012 .

[260]  Xiuhua Wei,et al.  Intensification of electrochemiluminescence of luminol on TiO2 supported Au atomic cluster nano-hybrid modified electrode. , 2012, The Analyst.

[261]  Tae-Jung Ha,et al.  The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of TiO2 xerogel composite film , 2013 .

[262]  Wojtek Wlodarski,et al.  Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing , 2003 .

[263]  Xin Xia,et al.  Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers , 2012, Sensors.

[264]  Ying Wang,et al.  Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables , 2009, Sensors.

[265]  T. Bayer,et al.  Development of ion-sensitive field-effect transistor-based sensors for benzylphosphonic acids and thiophenols using molecularly imprinted TiO2 films , 2004 .

[266]  Feng Yan,et al.  Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. , 2005, Biosensors & bioelectronics.

[267]  Sanjay Mathur,et al.  Amplified electrochemical DNA-sensing of nanostructured metal oxide films deposited on disposable graphite electrodes functionalized by chemical vapor deposition , 2009 .

[268]  Inmaculada Ortiz,et al.  Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes. , 2011, Water research.

[269]  Zeng Wen,et al.  Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism , 2010 .

[270]  Di Gao,et al.  Two-Stage Hydrothermal Growth of Long ZnO Nanowires for Efficient TiO2 Nanotube-Based Dye-Sensitized Solar Cells , 2012 .

[271]  P. Su,et al.  Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials , 2008 .

[272]  Taihong Wang,et al.  Fast Response Amperometric Biosensor for H2O2 Detection Based on Horseradish-Peroxidase/Titania-Nanowires/Chitosan Modified Glassy Carbon Electrode , 2009 .

[273]  Hyung‐Ho Park,et al.  The effect of porosity on the CO sensing properties of TiO2 xerogel thin films , 2013 .

[274]  Huangxian Ju,et al.  Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. , 2003, Biosensors & bioelectronics.

[275]  Pelagia-Irene Gouma,et al.  Sensing of Organic Vapors by Flame-Made TiO2 Nanoparticles , 2006 .

[276]  Youqi Tang,et al.  A New Highly Selective H2 Sensor Based on TiO2/PtO−Pt Dual-Layer Films , 2002 .

[277]  Prabir K. Dutta,et al.  Study of the resistance behavior of anatase and rutile thick films towards carbon monoxide and oxygen at high temperatures and possibilities for sensing applications , 2009 .

[278]  A. Micheli Fabrication and performance evaluation of a titania automotive exhaust gas sensor , 1984 .

[279]  P. Schmuki,et al.  Transition from Nanopores to Nanotubes: Self-Ordered Anodic Oxide Structures on Titanium−Aluminides , 2008 .

[280]  G. L. Sharma,et al.  Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor , 1997 .

[281]  Baikun Li,et al.  Ammonia Gas Sensor Using Polypyrrole‐Coated TiO2/ZnO Nanofibers , 2009 .

[282]  Zhihui Dai,et al.  Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential. , 2014, Biosensors & bioelectronics.

[283]  F. Solzbacher,et al.  TiOx-modified NiO thin films for H2 gas sensors: effects of TiOx-overlayer sputtering parameters , 2000 .

[284]  Huijun Zhao,et al.  Characterization of Photoelectrocatalytic Processes at Nanoporous TiO2 Film Electrodes: Photocatalytic Oxidation of Glucose , 2003 .

[285]  G. Shi,et al.  Ti/TiO2 Electrode Preparation Using Laser Anneal and Its Application to Determination of Chemical Oxygen Demand , 2006 .

[286]  P. Su,et al.  Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/Ag/TiO2 nanoparticles composite thin films , 2008 .

[287]  A. Gedanken,et al.  Sonochemical synthesis of titania whiskers andnanotubes , 2001 .

[288]  Andrew R. Morrill,et al.  Microarrayed Nanostructured Titania Thin Films Functionalized for Hydrogen Detection , 2008 .

[289]  Guang-Li Wang,et al.  Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation. , 2009, Biosensors & bioelectronics.

[290]  Martin Moskovits,et al.  Metal oxide "nanosponges" as chemical sensors: highly sensitive detection of hydrogen with nanosponge titania. , 2007, Angewandte Chemie.

[291]  Matteo Ferroni,et al.  Response to ethanol of thin films based on Mo and Ti oxides deposited by sputtering , 2003 .

[292]  Peifang Wang,et al.  Photoelectrocatalytic determination of chemical oxygen demand under visible light using Cu2O-loaded TiO2 nanotube arrays electrode , 2013 .

[293]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[294]  G. L. Sharma,et al.  Effect of Li+ doping on ZrO2–TiO2 humidity sensor , 1999 .

[295]  H. Ju,et al.  Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. , 2002, Analytical chemistry.

[296]  Elton Graugnard,et al.  TiO2 Inverse Opals Fabricated Using Low‐Temperature Atomic Layer Deposition , 2005 .

[297]  P. Schmuki,et al.  TiO2 nano test tubes as a self-cleaning platform for high-sensitivity immunoassays. , 2010, Small.

[298]  D. G. Laing,et al.  Relationship between molecular structure, concentration and odor qualities of oxygenated aliphatic molecules. , 2003, Chemical senses.

[299]  Seong‐Hyeon Hong,et al.  CO sensing performance in micro-arc oxidized TiO2 films for air quality control , 2006 .

[300]  Makoto Egashira,et al.  High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd , 2002 .

[301]  Georg von Freymann,et al.  Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals. , 2007, Journal of the American Chemical Society.

[302]  Huijun Zhao,et al.  Robust TiO2/BDD heterojunction photoanodes for determination of chemical oxygen demand in wastewaters , 2011 .

[303]  G. N. Chaudhari,et al.  Synthesis and characterization of CdO-doped nanocrystalline ZnO:TiO2-based H2S gas sensor , 2008 .

[304]  J. Kennedy,et al.  Hydrous titanium oxides--new supports for the simple immobilisation of enzymes. , 1976, Journal of the Chemical Society. Perkin transactions 1.

[305]  Wei-Wei Zhao,et al.  In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes: a general and efficient approach for new photoelectrochemical immunoassay. , 2012, Analytical chemistry.

[306]  I. Karube,et al.  Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode. , 2000, Analytical chemistry.

[307]  Mark N. Horenstein Microelectronic circuits and devices (2nd ed.) , 1995 .

[308]  Elton Graugnard,et al.  Large-Scale Fabrication of Ordered Nanobowl Arrays , 2004 .

[309]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[310]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[311]  Y. Lei,et al.  Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 , 2001 .

[312]  A. Takami,et al.  Development of titania heated exhaust-gas oxygen sensor , 1988 .

[313]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[314]  Alessandro Martucci,et al.  Au Nanoparticles in Nanocrystalline TiO2−NiO Films for SPR-Based, Selective H2S Gas Sensing , 2010 .

[315]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[316]  M. Pileni,et al.  Change in the shape of copper nanoparticles in ordered phases , 1995 .

[317]  A. Bandyopadhyay,et al.  Influence of crystallinity on CO gas sensing for TiO2 films , 2009 .

[318]  Junsheng Yu,et al.  Preparation, Characterization and Comparative NH3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films , 2010 .

[319]  Hui Xu,et al.  Electrochemical Sensors for Clinic Analysis , 2008, Sensors.

[320]  Makoto Egashira,et al.  H2 sensing performance of anodically oxidized TiO2 thin films equipped with Pd electrode , 2007 .

[321]  A. C. Jason,et al.  Effects of Water Vapour on the Electrical Properties of Anodized Aluminium , 1953, Nature.

[322]  G. Hunter,et al.  Reactively sputtered titania films as high temperature carbon monoxide sensors , 2005 .

[323]  Huijun Zhao,et al.  Development of chemical oxygen demand on-line monitoring system based on a photoelectrochemical degradation principle. , 2006, Environmental science & technology.

[324]  Seong‐Hyeon Hong,et al.  High H2 sensing behavior of TiO2 films formed by thermal oxidation , 2005 .

[325]  I. Willner,et al.  Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors , 2002 .

[326]  Han Nim Choi,et al.  Amperometric Ethanol Biosensor Based on Carbon Nanotubes Dispersed in Sol–Gel-Derived Titania–Nafion Composite Film , 2007 .

[327]  P. Schmuki,et al.  Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[328]  Man Kit Sam Lee,et al.  Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol , 2003 .

[329]  G. Ozin,et al.  High-efficiency dye-sensitized solar cell with three-dimensional photoanode. , 2011, Nano letters.

[330]  Hong‐Ming Lin,et al.  Hydrogen sulfide detection by nanocrystal PT doped TiO2-based gas sensors , 1995 .

[331]  Shuai Chen,et al.  Determination of Chemical Oxygen Demand Based on Novel Photoelectro-bifunctional Electrodes , 2011 .

[332]  W. Göpel,et al.  Surface and bulk properties of TiO2 in relation to sensor applications , 1988 .

[333]  Brian T. Cunningham,et al.  High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area , 2008 .

[334]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[335]  Vincenzo Guidi,et al.  CO sensing properties of titanium and iron oxide nanosized thin films , 2001 .

[336]  Juan-Yu Yang,et al.  Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols , 2001 .

[337]  Guohua Zhao,et al.  A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO(2) nanotube arrays. , 2010, Environmental science & technology.

[338]  Craig A. Grimes,et al.  Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements , 2006 .

[339]  G. Shi,et al.  Photoelectro-synergistic catalysis combined with a FIA system application on determination of chemical oxygen demand. , 2007, Talanta.

[340]  M. Maeda,et al.  Contact angle and biocompatibility of sol‐gel prepared TiO2 thin films for their use as semiconductor‐based cell‐viability sensors , 2008 .

[341]  Sotiris E. Pratsinis,et al.  Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol , 2008 .

[342]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[343]  Richard John,et al.  Development of a Direct Photoelectrochemical Method for Determination of Chemical Oxygen Demand , 2004 .

[344]  A. Gonzalez-Elipe,et al.  Mechanism of hydrogen gas-sensing at low temperatures using Rh/TiO2 systems , 1989 .

[345]  Tsuneharu Nitta,et al.  Humidity-Sensitive Electrical Conduction of MgCr2O4-TiO2 Porous Ceramics , 1980 .

[346]  Ruey-an Doong,et al.  Array-based titanium dioxide biosensors for ratiometric determination of glucose, glutamate and urea. , 2010, Biosensors & bioelectronics.

[347]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[348]  C. Wan,et al.  Sol–gel processed TiO2–K2O–LiZnVO4 ceramic thin films as innovative humidity sensors , 2000 .

[349]  M. Nogami,et al.  Sol-gel synthesis of high-humidity-sensitive amorphous P2O5-TiO2 films , 1997 .

[350]  E. Traversa,et al.  Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors , 1996 .

[351]  Wen Zeng,et al.  Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor , 2009, Sensors.

[352]  Z. Zhang,et al.  Electrochemiluminescent determination of chlorphenamine maleate based on ru(bpy) immobilized in a nano-titania/nafion membrane , 2006 .

[353]  G. Sberveglieri,et al.  Semiconductor MoO3–TiO2 thin film gas sensors , 2001 .

[354]  Patrik Schmuki,et al.  TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation. , 2009, Small.

[355]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[356]  G. Cao,et al.  Carbon monoxide annealed TiO2nanotube array electrodes for efficient biosensor applications , 2009 .

[357]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[358]  Yanbiao Liu,et al.  Photoelectrocatalytic COD determination method using highly ordered TiO(2) nanotube array. , 2009, Water research.

[359]  K. Zakrzewska,et al.  Nanocrystalline TiO2/SnO2 composites for gas sensors , 2012, Journal of Thermal Analysis and Calorimetry.

[360]  Hikaru Kobayashi,et al.  Mechanism of hydrogen sensing by Pd/TiO2 Schottky diodes , 1993 .

[361]  S. Yao,et al.  Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO(2) nanotubes. , 2010, Analytical chemistry.

[362]  G. Sumana,et al.  Sol-gel-derived titanium oxide-cerium oxide biocompatible nanocomposite film for urea sensor , 2009 .

[363]  I. Karube,et al.  Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis , 2001 .

[364]  Jianding Qiu,et al.  An amperometric glucose biosensor based on titania sol-gel/Prussian Blue composite film. , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[365]  Jiaguo Yu,et al.  A novel solid-state electrochemiluminescence sensor based on Ru(bpy)32 + immobilization on TiO2 nanotube arrays and its application for detection of amines in water , 2010, Nanotechnology.

[366]  Giorgio Sberveglieri,et al.  First Example of ZnO−TiO2 Nanocomposites by Chemical Vapor Deposition: Structure, Morphology, Composition, and Gas Sensing Performances , 2007 .

[367]  Lei Shi,et al.  Homogeneous electrochemiluminescence immunoassay based on tris(2,3-dibromopropyl) isocyanurate using luminol luminescence and Ti/TiO2 NTs electrode , 2013 .

[368]  Junwei Di,et al.  The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol-gel modified gold electrode. , 2008, Talanta.

[369]  Antonio Ficarella,et al.  Combustion conditions discrimination properties of Pt-doped TiO2 thin film oxygen sensor , 2007 .

[370]  Huijun Zhao,et al.  Photoelectrochemical measurement of phthalic acid adsorption on porous TiO2 film electrodes , 2003 .

[371]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[372]  Zhifu Liu,et al.  O2 and CO sensing of Ga2O3 multiple nanowire gas sensors , 2008 .

[373]  L. Prodi,et al.  Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications , 2012 .

[374]  I. Willner,et al.  Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors. , 2001, Analytical chemistry.

[375]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[376]  Jorge R. Frade,et al.  Detection mechanism of TiO2-based ceramic H2 sensors , 1999 .

[377]  Hsien-Chang Chang,et al.  TiO2 nanowire FET device: encapsulation of biomolecules by electro polymerized pyrrole propylic acid. , 2011, Biosensors & bioelectronics.

[378]  Yongping Luo,et al.  Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c. , 2009, Analytical chemistry.

[379]  Patrik Schmuki,et al.  TiO2 nanotubes : Tailoring the geometry in H3PO4/HF electrolytes , 2006 .

[380]  Kun Wang,et al.  Ultrasensitive photoelectrochemical sensing of nicotinamide adenine dinucleotide based on graphene-TiO2 nanohybrids under visible irradiation. , 2012, Analytica chimica acta.

[381]  Ke Wang,et al.  The Sensitized Solid‐Phase Electrochemiluminescence of Electrodeposited Poly‐Luminol/Aniline on AuAg/TiO2 Nanohybrid Functionalized Electrode for Flow Injection Analysis , 2014 .

[382]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[383]  M. Fox,et al.  Titanium dioxide photooxidation of thiocyanate: (SCN)2.cntdot.- studied by diffuse reflectance flash photolysis , 1990 .

[384]  I. Willner,et al.  Imprinting of chiral molecular recognition sites in thin TiO2 films associated with field-effect transistors: novel functionalized devices for chiroselective and chirospecific analyses. , 2001, Chemistry.

[385]  G. Shi,et al.  Photoelectro‐Synergistic Catalysis at Ti/TiO2/PbO2 Electrode and Its Application on Determination of Chemical Oxygen Demand , 2006 .

[386]  Nam-Gyu Park,et al.  Compact Inverse‐Opal Electrode Using Non‐Aggregated TiO2 Nanoparticles for Dye‐Sensitized Solar Cells , 2009 .

[387]  Ho Won Jang,et al.  A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose. , 2013, The Analyst.

[388]  S. Iannotta,et al.  Nanostructured TiO2 thin films prepared by supersonic beams and their application in a sensor array for the discrimination of VOC , 2003 .

[389]  P. P. Hankare,et al.  Low Cost Nanostructured Anatase TiO 2 as a H 2 S Gas Sensor Synthesized by Microwave Assisted Technique , 2011 .

[390]  J. Macák,et al.  Formation of Double‐Walled TiO2 Nanotubes and Robust Anatase Membranes , 2008 .

[391]  Ruth Shinar,et al.  Enhanced Photoluminescence of Oxygen Sensing Films through Doping with High Dielectric Constant Particles , 2007 .

[392]  Huijun Zhao,et al.  Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode. , 2012, Analytica chimica acta.

[393]  J. M. Thorp,et al.  The dielectric behaviour of vapours adsorbed on porous solids , 1962 .

[394]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[395]  J. Macák,et al.  Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. , 2005, Journal of biomedical materials research. Part A.

[396]  Zafer Ziya Öztürk,et al.  Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor , 2010 .

[397]  Akira Fujishima,et al.  Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .

[398]  S. Semancik,et al.  Conductance response of Pd/SnO2 (110) model gas sensors to H2 and O2 , 1990 .

[399]  Jian Shi,et al.  Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. , 2011, Nano letters.

[400]  Hongwei Gao,et al.  Electrochemical DNA Biosensor Based on Graphene and TiO2 Nanorods Composite Film for the Detection of Transgenic Soybean Gene Sequence of MON89788 , 2012 .

[401]  Jinghong Li,et al.  Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. , 2010, Analytical chemistry.

[402]  Manoj K. Ram,et al.  CO gas sensing from ultrathin nano-composite conducting polymer film , 2005 .

[403]  Xudong Wang,et al.  Highly Efficient Capillary Photoelectrochemical Water Splitting Using Cellulose Nanofiber‐Templated TiO2 Photoanodes , 2014, Advanced materials.

[404]  Biao Wang,et al.  Improved and excellent CO sensing properties of Cu-doped TiO2 nanofibers , 2010 .