All-optical diode action in asymmetric nonlinear photonic multilayers with perfect transmission resonances

Light propagation in asymmetric Kerr-nonlinear multilayers with perfect transmission resonances is theoretically investigated. It is found that hybrid Fabry-Perot-resonator-photonic-crystal structures of the type (BA){sup k}(AB){sup k}(AABB){sup m} exhibit both pronounced unidirectionality (due to strong spatial asymmetry of the resonant mode) and high transmission (due to the existence of a perfect transmission resonance). This results in nonlinear optical diode action with low reflection losses without need for a pumping beam or input pulse modulation. By slightly perturbing the perfect transmission resonance condition, the operating regime of the optical diode can be tuned, with a tradeoff between minimizing the reflection losses and maximizing the frequency bandwidth where unidirectional transmission exists. Optical diode action is demonstrated in direct numerical simulation, showing >92% transmittance in one direction and about 22% in the other. The effect of perfect transmission resonance restoration induced by nonlinearity was observed analytically and numerically. The proposed geometry is shown to have advantages over previously reported designs based on photonic quasicrystals.

[1]  Andrew G. Glen,et al.  APPL , 2001 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.