A Complex Network Approach to Urban Growth

Economic geography can be viewed as a large and growing network of interacting activities. This fundamental network structure and the large size of such systems makes the complex network approach an attractive model for growth dynamics modeling. In this paper the authors propose the use of complex networks for geographical modeling and demonstrate how such an application can be combined with a cellular model to produce output that is consistent with large-scale regularities such as power laws and fractality. Complex networks can provide a stringent framework for growth dynamic modeling where concepts from, for example, spatial interaction models and multiplicative growth models, can be combined with the flexible representation of land and behaviour found in cellular automata and agent-based models. In addition, there exists a large body of theory for the analysis of complex networks that have direct applications in urban geographic problems. The intended use of such models is twofold: (1) to address the problem of how the empirically observed hierarchical structure of settlements can be explained as a stationary property of a stochastic evolutionary process rather than as equilibrium points in a dynamic process, and, (2) to improve the predictive quality of applied urban modeling.

[1]  D. Dendrinos,et al.  Fundamental issues in nonlinear urban population dynamic models , 1992, The Annals of regional science.

[2]  G. B. A. Barab'asi Competition and multiscaling in evolving networks , 2000, cond-mat/0011029.

[3]  Kristian Lindgren,et al.  A spatial network explanation for a hierarchy of urban power laws , 2003, cond-mat/0306439.

[4]  Michael Batty,et al.  Fractal Cities: A Geometry of Form and Function , 1996 .

[5]  Martin Nilsson Jacobi,et al.  Hierarchical Organization in , 2005 .

[6]  B. Pijanowski,et al.  Using neural networks and GIS to forecast land use changes: a Land Transformation Model , 2002 .

[7]  Susanna C. Manrubia,et al.  Intermittency model for urban development , 1998 .

[8]  Panos M. Pardalos,et al.  On maximum clique problems in very large graphs , 1999, External Memory Algorithms.

[9]  W. Reed,et al.  On the Rank-Size Distribution for Human Settlements , 2002 .

[10]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[11]  Hélène Mathian,et al.  SIMPOP: A Multiagent System for the Study of Urbanism , 1997 .

[12]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Ramon Ferrer i Cancho,et al.  The small world of human language , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  Paul M. Hohenberg,et al.  The making of urban Europe, 1000-1994 , 1997 .

[15]  P. Torrens,et al.  Cellular Automata and Urban Simulation: Where Do We Go from Here? , 2001 .

[16]  Roger White,et al.  Integrating Constrained Cellular Automata Models, GIS and Decision Support Tools for Urban Planning , 2003 .

[17]  P. Holme Network dynamics of ongoing social relationships , 2003, cond-mat/0308544.

[18]  Anthony Gar-On Yeh,et al.  Urban Simulation Using Neural Networks and Cellular Automata for Land Use Planning , 2002 .

[19]  J. S. Andrade,et al.  Modeling urban growth patterns with correlated percolation , 1998, cond-mat/9809431.

[20]  Wolfgang Weidlich,et al.  Sociodynamics: a Systematic Approach to Mathematical Modelling in the Social Sciences , 2000 .

[21]  D. Pumain Scaling laws and urban systems , 2004 .

[22]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[23]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[24]  Kenneth T. Rosen,et al.  The Size Distribution of Cities: An Examination of the Pareto Law and Primacy , 1980 .

[25]  J. Henderson The Sizes and Types of Cities , 1972 .

[26]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[27]  Keith C. Clarke,et al.  Loose-Coupling a Cellular Automaton Model and GIS: Long-Term Urban Growth Prediction for San Francisco and Washington/Baltimore , 1998, Int. J. Geogr. Inf. Sci..

[28]  L. Amaral,et al.  Small-world networks and the conformation space of a short lattice polymer chain , 2000, cond-mat/0004380.

[29]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[30]  Roger White,et al.  The Use of Constrained Cellular Automata for High-Resolution Modelling of Urban Land-Use Dynamics , 1997 .

[31]  M Girvan,et al.  Structure of growing social networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Anders Hagson,et al.  Urban economy as a scale-free network. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Helen Couclelis,et al.  Cellular Worlds: A Framework for Modeling Micro—Macro Dynamics , 1985 .

[34]  William Alonso,et al.  A THEORY OF THE URBAN LAND MARKET , 2005 .

[35]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[36]  S. Gould The Structure of Evolutionary Theory , 2002 .

[37]  William L. Garrison,et al.  ALTERNATE EXPLANATIONS OF URBAN RANK-SIZE RELATIONSHIPS1 , 1958 .

[38]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[39]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[40]  Ricard V. Solé,et al.  Transient Dynamics and Scaling Phenomena in Urban Growth , 1999 .

[41]  Steven Brakman,et al.  An Introduction to Geographical Economics , 2001 .

[42]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[43]  M. Batty Generating Urban Forms from Diffusive Growth , 1991 .

[44]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[45]  G. Bocco,et al.  Predicting land-cover and land-use change in the urban fringe A case in Morelia city, Mexico , 2001 .

[46]  W. Isard Methods Of Regional Analysis , 1960 .

[47]  A. Venables,et al.  The Spatial Economy: Cities, Regions, and International Trade , 1999 .

[48]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[49]  Robert Axtell and Richard Florida Emergent Cities: A Microeconomic Explanation for Zipf's Law , 2001 .

[50]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[51]  S. Redner,et al.  Connectivity of growing random networks. , 2000, Physical review letters.

[52]  G. J. Rodgers,et al.  Growing random networks with fitness , 2001, cond-mat/0103423.

[53]  Steven Brakman,et al.  Rethinking the "New' Geographical Economics , 2003 .

[54]  S. N. Dorogovtsev,et al.  Structure of Growing Networks: Exact Solution of the Barabasi--Albert's Model , 2000, cond-mat/0004434.

[55]  Anthony M. Townsend,et al.  The Internet Backbone and the American Metropolis , 2000, Inf. Soc..

[56]  S. N. Dorogovtsev,et al.  Structure of growing networks with preferential linking. , 2000, Physical review letters.

[57]  Alan Wilson,et al.  A statistical theory of spatial distribution models , 1967 .

[58]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[59]  J. B. Rosser,et al.  Coordination and bifurcation in growing spatial economies , 1998 .

[60]  Steen Rasmussen,et al.  Urban Settlement Transitions , 2002 .

[61]  W. Alonso Location And Land Use , 1964 .

[62]  Denise Pumain,et al.  Settlement systems in the evolution , 2000 .

[63]  L. Curry,et al.  THE RANDOM SPATIAL ECONOMY: AN EXPLORATION IN SETTLEMENT THEORY , 1964 .

[64]  P. Krugman,et al.  The Spatial Economy , 1999 .

[65]  D. Huff A Probabilistic Analysis of Shopping Center Trade Areas , 1963 .

[66]  M. Castells The rise of the network society , 1996 .

[67]  X. Gabaix Zipf's Law for Cities: An Explanation , 1999 .

[68]  M. Ghiselin A Radical Solution to the Species Problem , 1974 .

[69]  K. Soo Zipf's law for cities: a cross-country investigation , 2005 .

[70]  Taisei Kaizoji Scaling behavior in land markets , 2003 .

[71]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[72]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[73]  David A. Lane,et al.  Complexity and Local Interactions: Towards a Theory of Industrial Districts , 2002 .

[74]  Roger Guimerà,et al.  Analytical solution of a model for complex food webs. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  M. Marsili,et al.  Interacting Individuals Leading to Zipf's Law , 1998, cond-mat/9801289.

[76]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[77]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .