Synchronization analysis of coupled Lienard-type oscillators by averaging

Sufficient conditions for the synchronization of coupled Lienard-type oscillators are investigated via averaging technique. The coupling considered here is fixed, nonsymmetric, and nonlinear. Under the assumption that the interconnection topology defines a connected graph, it is shown that the solutions of oscillators converge arbitrarily close to each other, starting from initial conditions arbitrarily far apart, provided that the frequency of oscillations is large enough and the initial phases of oscillators all lie in an open semicircle. It is also shown that the nearly-synchronized oscillations always take place around some fixed magnitude independent of the initial conditions and the coupling functions.

[1]  J. Buck Synchronous Rhythmic Flashing of Fireflies. II. , 1938, The Quarterly Review of Biology.

[2]  B. Romeira,et al.  A LiÉnard Oscillator Resonant Tunnelling Diode-Laser Diode Hybrid Integrated Circuit: Model and Experiment , 2008, IEEE Journal of Quantum Electronics.

[3]  R. L. Viana,et al.  Synchronization regimes for two coupled noisy Lienard-type driven oscillators , 2008 .

[4]  A. Teel,et al.  Semi-global practical asymptotic stability and averaging , 1999 .

[5]  Per G. Reinhall,et al.  An Investigation of Coupled van der Pol Oscillators , 2003 .

[6]  H. Broer,et al.  Resonance and Fractal Geometry , 2012 .

[7]  P. Holmes,et al.  Bifurcation of periodic motions in two weakly coupled van der Pol oscillators , 1980 .

[8]  D. Linkens Analytical solution of large numbers of mutually coupled nearly sinusoidal oscillators , 1974 .

[9]  Tetsuro Endo,et al.  Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators , 1978 .

[10]  Teresa Zielińska Coupled oscillators utilised as gait rhythm generators of a two-legged walking machine , 2004, Biological Cybernetics.

[11]  Chaohong Cai,et al.  Synchronization of nonlinearly coupled harmonic oscillators , 2010, Proceedings of the 2010 American Control Conference.

[12]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[14]  Max Suell Dutra,et al.  Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol , 2003, Biological Cybernetics.

[15]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[16]  Per G. Reinhall,et al.  Coupled van der Pol oscillators as a simplified model for generation of neural patterns for jellyfish locomotion , 2006 .

[17]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[18]  Dynamics of three coupled van der Pol oscillators with application to circadian rhythms , 2007 .

[19]  Charles S. Peskin,et al.  Mathematical aspects of heart physiology , 1975 .

[20]  Stephen Wirkus,et al.  The Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling , 2002 .

[21]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[22]  Torsten Söderström,et al.  Periodic signal modeling based on Lie/spl acute/nard's equation , 2004, IEEE Transactions on Automatic Control.

[23]  Bhaskar Choubey An Experimental Investigation of Coupled van der Pol Oscillators , 2010 .

[24]  S. R. Lopes,et al.  Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat , 2004 .

[25]  Derek A. Linkens,et al.  Mathematical Modeling of the Colorectal Myoelectrical Activity in Humans , 1976, IEEE Transactions on Biomedical Engineering.