Outlook on ecologically improved composites for aviation interior and secondary structures

Today, mainly man-made materials such as carbon and glass fibres are used to produce composite parts in aviation. Renewable materials such as natural fibres or bio-sourced resin systems have not found their way into aviation, yet. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibres such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, the bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a life cycle assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. In this paper, the status of selected ecologically improved materials will be presented with an outlook for potential application in interior and secondary structures.

[1]  W. Cai,et al.  Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites , 2013 .

[2]  Sergio Oller,et al.  Study of Delamination in Composites by Using the Serial/Parallel Mixing Theory and a Damage Formulation , 2008 .

[3]  Konstantinos Tserpes,et al.  Prediction of yield strength of MWCNT/PP nanocomposite considering the interphase and agglomeration , 2017 .

[4]  K. Tserpes,et al.  Finite element modeling of carbon nanotube agglomerates in polymers , 2015 .

[5]  Rasoul Esmaeely Neisiany,et al.  Fabrication and characterization of silicon carbide/epoxy nanocomposite using silicon carbide nanowhisker and nanoparticle reinforcements , 2016 .

[6]  María Sánchez,et al.  Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM , 2013 .

[7]  B. F. Yousif,et al.  A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites , 2013 .

[8]  S. Oller Nonlinear Dynamics of Structures , 2014 .

[9]  S. Oller Numerical Simulation of Mechanical Behavior of Composite Materials , 2014 .

[10]  Jang‐Kyo Kim,et al.  Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition , 2014, Journal of Materials Science.

[11]  Anthony Dichiara,et al.  Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites , 2013 .

[12]  R. Hugh Gong,et al.  Nonwoven Polylactic Acid and Flax Biocomposites , 2013 .

[13]  Hui Li,et al.  Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite , 2015 .

[14]  J. Lubliner,et al.  Definition of a general implicit orthotropic yield criterion , 2003 .

[15]  Bernard Boutevin,et al.  Biobased thermosetting epoxy: present and future. , 2014, Chemical reviews.

[16]  D. Yan,et al.  The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites , 2013 .

[17]  Soraia Pimenta,et al.  Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. , 2011, Waste management.

[18]  Xiaoqing Liu Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts , 2012 .

[19]  E. Oñate,et al.  A hygro-thermo-mechanical constitutive model for multiphase composite materials , 1996 .

[20]  R. Hugh Gong,et al.  Three-dimensional nonwoven flax fiber reinforced polylactic acid biocomposites , 2014 .

[21]  Jens Bachmann,et al.  Verbesserung der Brandeigenschaften von NFK im Hinblick auf den Luftfahrt-Kabineneinsatz , 2011 .

[22]  H. Tien,et al.  Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites , 2010 .

[23]  H. Garmestani,et al.  Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing , 2003 .

[24]  Yan Li,et al.  Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites , 2008 .

[25]  Hui Li,et al.  Surface grafting of flax fibres with hydrous zirconia nanoparticles and the effects on the tensile and bonding properties , 2016 .

[26]  Stephen Pickering,et al.  Recycling technologies for thermoset composite materials—current status , 2006 .

[27]  Xiaolei Huang,et al.  Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites , 2015, Journal of Materials Science.

[28]  Y. Mai,et al.  Effects of fibre surface treatment on fracture-mechanical properties of sisal-fibre composites , 2005 .

[29]  Jin Zhu,et al.  Synthesis, Characterization of a Rosin-based Epoxy Monomer and its Comparison with a Petroleum-based Counterpart , 2013 .

[30]  Gabriel Bugeda,et al.  Multilayered composite structure design optimisation using distributed/parallel multi-objective evolutionary algorithms , 2012 .

[31]  R. H. Gong,et al.  Biodegradability of nonwoven flax fiber reinforced polylactic acid biocomposites , 2014 .

[32]  Konstantinos Tserpes,et al.  Numerical computation of electrical conductivity of carbon nanotube-filled polymers , 2016 .

[33]  V Dovidenas COMPOSITES--MATERIALS OF THE FUTURE , 1986 .

[34]  S. Oller,et al.  Numerical Simulation of Matrix Reinforced Composite Materials Subjected to Compression Loads , 2009 .

[35]  Konstantinos Tserpes,et al.  Parametric numerical evaluation of the effective elastic properties of carbon nanotube-reinforced polymers , 2013 .

[36]  E. Oñate,et al.  Composite materials non-linear modelling for long fibre-reinforced laminates , 2008 .

[37]  S. Oller,et al.  An efficient multi-scale method for non-linear analysis of composite structures , 2015 .

[38]  H. Bos,et al.  The potential of flax fibres as reinforcement for composite materials , 2004 .

[39]  Yan Li,et al.  Interlaminar toughening in flax fiber-reinforced composites interleaved with carbon nanotube buckypaper , 2014 .

[40]  S. Oller,et al.  Numerical homogenization for composite materials analysis: comparison with other micro mechanical formulations , 2015 .

[41]  Eugenio Oñate,et al.  Robust design optimisation of advance hybrid (fiber–metal) composite structures ☆ , 2013 .

[42]  Yiu-Wing Mai,et al.  Interfacial Characteristics of Sisal Fiber and Polymeric Matrices , 2006 .

[43]  Yan Li,et al.  Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites , 2010 .

[44]  E. Oñate,et al.  Computationally optimized formulation for the simulation of composite materials and delamination failures , 2011 .

[45]  M. Balasubramanian,et al.  Investigation of impact behavior of epoxy reinforced with nanometer- and micrometer-sized silicon carbide particles , 2013 .

[46]  Horia Alejandro Barbat Barbat,et al.  Analysis of ultra low cycle fatigue problems with the Barcelona plastic damage model , 2015 .

[47]  Sergio Horacio Oller Martínez,et al.  Multiscale computational homogenization , 2017 .

[48]  Holger Fischer,et al.  Quality Control for Recycled Carbon Fibers , 2013 .

[49]  R. H. Gong,et al.  3D Nonwoven Flax Fiber Reinforced Polylactic Acid Biocomposites , 2014 .