Geometric Heat Equation and Nonlinear Diffusion of Shapes and Images

Visual tasks often require a hierarchical representation of shapes and images in scales ranging from coarse to fine. A variety of linear and nonlinear smoothing techniques, such as Gaussian smoothing, anisotropic diffusion, regularization, etc., have been proposed, leading to scalespace representations. We propose ageometricsmoothing method based on local curvature for shapes and images. The deformation by curvature, or the geometric heat equation, is a special case of thereaction?diffusionframework proposed in 41]. For shapes, the approach is analogous to the classical heat equation smoothing, but with a renormalization by arc-length at each infinitesimal step. For images, the smoothing is similar to anisotropic diffusion in that, since the component of diffusion in the direction of the brightness gradient is nil, edge location is left intact. Curvature deformation smoothing for shape has a number of desirable properties: it preserves inclusion order, annihilates extrema and inflection points without creating new ones, decreases total curvature, satisfies the semigroup property allowing for local iterative computations, etc. Curvature deformation smoothing of an image is based on viewing it as a collection of iso-intensity level sets, each of which is smoothed by curvature. The reassembly of these smoothed level sets into a smoothed image follows a number of mathematical properties; it is shown that the extension from smoothing shapes to smoothing images is mathematically sound due to a number of recent results 21]. A generalization of these results 14] justifies the extension of the entireentropy scale spacefor shapes 42] to one for images, where each iso-intensity level curve is deformed by a combination of constant and curvature deformation. The scheme has been implemented and is illustrated for several medical, aerial, and range images.

[1]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[2]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[3]  H. Blum Biological shape and visual science (part I) , 1973 .

[4]  D. Widder The heat equation , 1975 .

[5]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[6]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[8]  J. Sethian AN ANALYSIS OF FLAME PROPAGATION , 1982 .

[9]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[10]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[11]  M. Gage,et al.  An isoperimetric inequality with applications to curve shortening , 1983 .

[12]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[13]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[14]  M. Gage Curve shortening makes convex curves circular , 1984 .

[15]  Guy Barles,et al.  Remarks on a flame propagation model , 1985 .

[16]  J. Sethian Curvature and the evolution of fronts , 1985 .

[17]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  S W Zucker,et al.  Receptive fields and the representation of visual information. , 1986, Human neurobiology.

[19]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Berthold K. P. Horn,et al.  Filtering Closed Curves , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[24]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[26]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[27]  James A. Sethian,et al.  Numerical Methods for Propagating Fronts , 1987 .

[28]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[29]  Benjamin B. Kimia,et al.  Deblurring Gaussian blur , 2015, Comput. Vis. Graph. Image Process..

[30]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[31]  H. Ishii On uniqueness and existence of viscosity solutions of fully nonlinear second‐order elliptic PDE's , 1989 .

[32]  Brian White,et al.  Some recent developments in differential geometry , 1989 .

[33]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[34]  Jan-Olof Eklundh,et al.  Scale detection and region extraction from a scale-space primal sketch , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[35]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  S. Zucker,et al.  Toward a computational theory of shape: an overview , 1990, eccv 1990.

[37]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[38]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[39]  Y. Giga,et al.  Motion of hypersurfaces and geometric equations , 1990 .

[40]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[42]  Yoshikazu Giga,et al.  Remarks on viscosity solutions for evolution equations , 1991 .

[43]  Jayant Shah Segmentation by nonlinear diffusion. II , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  L. Evans,et al.  Motion of level sets by mean curvature III , 1992 .

[45]  F. Guichard,et al.  Axiomatisation et nouveaux opérateurs de la morphologie mathématique , 1992 .

[46]  Benjamin B. Kimia,et al.  Entropy scale-space , 1992 .

[47]  Luis Alvarez,et al.  Axiomes et 'equations fondamentales du traitement d''images , 1992 .

[48]  Benjamin B. Kimia,et al.  On the evolution of curves via a function of curvature , 1992 .

[49]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[50]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  C. V. Pao Reaction-Diffusion Equations , 1992 .

[52]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[53]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[54]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[55]  Luc Van Gool,et al.  Image enhancement using non-linear diffusion , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Ross T. Whitaker,et al.  A multi-scale approach to nonuniform diffusion , 1993 .

[57]  Luc Vincent,et al.  Mathematical morphology: The Hamilton-Jacobi connection , 1993, 1993 (4th) International Conference on Computer Vision.

[58]  Benjamin B. Kimia,et al.  Nonlinear shape approximation via the entropy scale space , 1993, Optics & Photonics.

[59]  John Oliensis Local Reproducible Smoothing Without Shrinkage , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  R. Whitaker Geometry-limited diffusion in the characterization of geometric patches in images , 1993 .

[61]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[62]  Max A. Viergever,et al.  Nonlinear diffusion of scalar images using well-posed differential operators , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Guillermo Sapiro,et al.  Area and Lenght Preserving Geometric Invariant Scale-Spaces , 1994, ECCV.

[64]  Hervé Delingette,et al.  Intrinsic Stabilizers of Planar Curves , 1994, ECCV.

[65]  S. Zucker,et al.  Exploring the Shape Manifold: the Role of Conservation Laws , 1994 .

[66]  Luis Alvarez,et al.  Formalization and computational aspects of image analysis , 1994, Acta Numerica.

[67]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[68]  Max A. Viergever,et al.  Nonlinear scale-space , 1995, Image Vis. Comput..