Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies

[1]  H. Gendelman,et al.  Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders , 2020, Molecular Neurodegeneration.

[2]  N. Cairns,et al.  From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline , 2020, Molecular Neurodegeneration.

[3]  J. Chapman,et al.  Brain Protease Activated Receptor 1 Pathway: A Therapeutic Target in the Superoxide Dismutase 1 (SOD1) Mouse Model of Amyotrophic Lateral Sclerosis , 2020, International journal of molecular sciences.

[4]  R. Osta,et al.  Neuroprotective Fragment C of Tetanus Toxin Modulates IL-6 in an ALS Mouse Model , 2020, Toxins.

[5]  T. Woodruff,et al.  The Peripheral Immune System and Amyotrophic Lateral Sclerosis , 2020, Frontiers in Neurology.

[6]  I. Munitic,et al.  Optineurin Insufficiency Disbalances Proinflammatory and Anti-inflammatory Factors by Reducing Microglial IFN-β Responses , 2018, Neuroscience.

[7]  C. Ki,et al.  Repeated Intrathecal Mesenchymal Stem Cells for Amyotrophic Lateral Sclerosis , 2018, Annals of neurology.

[8]  E. Erba,et al.  Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous system of ALS SOD1G93A mice , 2018, Molecular Neurodegeneration.

[9]  D. Centonze,et al.  Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions , 2018, Front. Aging Neurosci..

[10]  Robert H. Brown,et al.  ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function , 2018, Neurobiology of Aging.

[11]  Christopher C. Overall,et al.  Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia , 2018, The Journal of experimental medicine.

[12]  G. Stewart,et al.  Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis: A Study of Humans and a Transgenic Mouse Model , 2018, JAMA neurology.

[13]  S. Paganoni,et al.  Integrated magnetic resonance imaging and [11C]‐PBR28 positron emission tomographic imaging in amyotrophic lateral sclerosis , 2018, Annals of neurology.

[14]  G. Sobue,et al.  Systemic overexpression of SQSTM1/p62 accelerates disease onset in a SOD1H46R-expressing ALS mouse model , 2018, Molecular Brain.

[15]  R. Toth,et al.  Dysfunction of Optineurin in Amyotrophic Lateral Sclerosis and Glaucoma , 2018, Front. Immunol..

[16]  M. Cudkowicz,et al.  Expanded autologous regulatory T-lymphocyte infusions in ALS , 2018, Neurology: Neuroimmunology & Neuroinflammation.

[17]  L. Facci,et al.  An Inflammation-Centric View of Neurological Disease: Beyond the Neuron , 2018, Front. Cell. Neurosci..

[18]  A. Chiò,et al.  Common polymorphisms of chemokine (C‐X3‐C motif) receptor 1 gene modify amyotrophic lateral sclerosis outcome: A population‐based study , 2018, Muscle & nerve.

[19]  J. Trojanowski,et al.  Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy , 2018, Nature Neuroscience.

[20]  Robert H. Brown,et al.  An open label study of a novel immunosuppression intervention for the treatment of amyotrophic lateral sclerosis , 2018, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[21]  P. Visscher,et al.  Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis , 2017, Nature Communications.

[22]  J. Tapia,et al.  Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS , 2017, Proceedings of the National Academy of Sciences.

[23]  F. Granucci,et al.  Inflammatory role of dendritic cells in Amyotrophic Lateral Sclerosis revealed by an analysis of patients’ peripheral blood , 2017, Scientific Reports.

[24]  R. Baloh,et al.  Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. , 2017, The Journal of clinical investigation.

[25]  Shanker Kalyana-Sundaram,et al.  Characterization of Gene Expression Phenotype in Amyotrophic Lateral Sclerosis Monocytes , 2017, JAMA neurology.

[26]  E. Shpall,et al.  ALS patients' regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. , 2017, JCI insight.

[27]  A. Sierra,et al.  Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging , 2017, International journal of molecular sciences.

[28]  Annelot M. Dekker,et al.  Safety and efficacy of ozanezumab in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled, phase 2 trial , 2017, The Lancet Neurology.

[29]  P. Andersen,et al.  Association of Mutations in TBK1 With Sporadic and Familial Amyotrophic Lateral Sclerosis and Frontotemporal Dementia , 2017, JAMA neurology.

[30]  Jonathan M. Morris,et al.  Safety of intrathecal autologous adipose-derived mesenchymal stromal cells in patients with ALS , 2016, Neurology.

[31]  H. Ryu,et al.  Astrocytes and Microglia as Non-cell Autonomous Players in the Pathogenesis of ALS , 2016, Experimental Neurobiology.

[32]  R. Robitaille,et al.  New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction , 2016, The Journal of physiology.

[33]  Parag G. Patil,et al.  Transplantation of spinal cord–derived neural stem cells for ALS , 2016, Neurology.

[34]  P. Vourc'h,et al.  Combined Metabolomics and Transcriptomics Approaches to Assess the IL-6 Blockade as a Therapeutic of ALS: Deleterious Alteration of Lipid Metabolism , 2016, Neurotherapeutics.

[35]  A. Whitworth,et al.  The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy , 2016, The EMBO journal.

[36]  E. Holzbaur,et al.  Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy , 2016, Proceedings of the National Academy of Sciences.

[37]  M. Smolka,et al.  The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway , 2016, Acta neuropathologica communications.

[38]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[39]  R. Giger,et al.  Stable biomarker for plastic microglia , 2016, Proceedings of the National Academy of Sciences.

[40]  E. Melamed,et al.  Safety and Clinical Effects of Mesenchymal Stem Cells Secreting Neurotrophic Factor Transplantation in Patients With Amyotrophic Lateral Sclerosis: Results of Phase 1/2 and 2a Clinical Trials. , 2016, JAMA neurology.

[41]  A. Ludolph,et al.  Peripheral monocytes are functionally altered and invade the CNS in ALS patients , 2016, Acta Neuropathologica.

[42]  F. C. Bennett,et al.  New tools for studying microglia in the mouse and human CNS , 2016, Proceedings of the National Academy of Sciences.

[43]  S. Appel,et al.  TDP-43 activates microglia through NF-κB and NLRP3 inflammasome , 2015, Experimental Neurology.

[44]  J. Julien,et al.  Inflammation Induces TDP-43 Mislocalization and Aggregation , 2015, PloS one.

[45]  I. Malyshev,et al.  Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage “Switch” Phenotype , 2015, BioMed research international.

[46]  J. Rothstein,et al.  Rodent Models of Amyotrophic Lateral Sclerosis , 2015, Current protocols in pharmacology.

[47]  Hyun Young Kim,et al.  Phase I Trial of Repeated Intrathecal Autologous Bone Marrow‐Derived Mesenchymal Stromal Cells in Amyotrophic Lateral Sclerosis , 2015, Stem cells translational medicine.

[48]  G. Sobue,et al.  Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. , 2015, Cell reports.

[49]  F. Ginhoux,et al.  C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. , 2015, Immunity.

[50]  S. Appel,et al.  Protective and Toxic Neuroinflammation in Amyotrophic Lateral Sclerosis , 2015, Neurotherapeutics.

[51]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[52]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[53]  S. H. Kim,et al.  The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in ALS patients , 2014, Journal of neurochemistry.

[54]  R. Pacheco,et al.  Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases , 2014, Journal of Neuroimmunology.

[55]  À. López-López,et al.  CX3CR1 Is a Modifying Gene of Survival and Progression in Amyotrophic Lateral Sclerosis , 2014, PloS one.

[56]  Patrick G. Shaw,et al.  C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease , 2014, Nature.

[57]  P. Sanberg,et al.  Blood-CNS Barrier Impairment in ALS patients versus an animal model , 2014, Front. Cell. Neurosci..

[58]  John Q. Trojanowski,et al.  Amyotrophic lateral sclerosis—a model of corticofugal axonal spread , 2013, Nature Reviews Neurology.

[59]  R. Takahashi,et al.  Optineurin suppression causes neuronal cell death via NF‐κB pathway , 2013, Journal of neurochemistry.

[60]  N. Nishimoto,et al.  Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients. , 2013, American journal of neurodegenerative disease.

[61]  J. Trojanowski,et al.  Deciphering amyotrophic lateral sclerosis: What phenotype, neuropathology and genetics are telling us about pathogenesis , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[62]  S. Powell,et al.  Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival , 2012, EMBO molecular medicine.

[63]  Sonja W. Scholz,et al.  Valosin-containing protein (VCP) mutations in sporadic amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[64]  J. Trojanowski,et al.  Microglial Activation Correlates with Disease Progression and Upper Motor Neuron Clinical Symptoms in Amyotrophic Lateral Sclerosis , 2012, PloS one.

[65]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[66]  S. Appel,et al.  Peripheral nerve inflammation in ALS mice: cause or consequence , 2012, Neurology.

[67]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[68]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[69]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[70]  W. Robberecht,et al.  Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease , 2011, The Lancet Neurology.

[71]  J. Tschopp,et al.  A role for mitochondria in NLRP3 inflammasome activation , 2011, Nature.

[72]  Brian B. Gibbens,et al.  Non-ATG–initiated translation directed by microsatellite expansions , 2010, Proceedings of the National Academy of Sciences.

[73]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[74]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[75]  A. Schneider,et al.  Neurotrophic Growth Factors for the Treatment of Amyotrophic Lateral Sclerosis: Where Do We Stand? , 2010, Front. Neurosci..

[76]  Masahiro Fujita,et al.  Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker , 2010, NeuroImage.

[77]  Gerald McGwin,et al.  A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus , 2009, Nature Genetics.

[78]  E. Alnemri,et al.  Cutting Edge: NF-κB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression1 , 2009, The Journal of Immunology.

[79]  Pui-Yan Kwok,et al.  Genomewide Scan Reveals Association of Psoriasis with IL-23 and NF-κB Pathways , 2008, Nature Genetics.

[80]  S. Appel,et al.  CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS , 2008, Proceedings of the National Academy of Sciences.

[81]  H. Paulson,et al.  SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. , 2008, The Journal of clinical investigation.

[82]  S. Appel,et al.  Mutant SOD1G93A microglia are more neurotoxic relative to wild‐type microglia , 2007, Journal of neurochemistry.

[83]  S. Mckercher,et al.  Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[84]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[85]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[86]  Lan Guo,et al.  Development of rabbit monoclonal and polyclonal antibodies for detection of site-specific histone modifications and their application in analyzing overall modification levels , 2006, Cell Research.

[87]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[88]  K. Yamanaka,et al.  The multi-dimensional roles of astrocytes in ALS , 2018, Neuroscience Research.

[89]  Robert H. Brown,et al.  Amyotrophic Lateral Sclerosis. , 2017, The New England journal of medicine.