Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation

Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it remains unclear how oculomotor adaptation depends on the interplay between the characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses. Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar microcircuit properties and it incorporates spike-based synaptic plasticity at multiple cerebellar sites. A detailed Purkinje cell model reproduces the three spike-firing patterns that are shown to regulate the cerebellar output. Our results suggest that pauses following Purkinje complex spikes (bursts) encode transient disinhibition of target medial vestibular nuclei, critically gating the vestibular signals conveyed by mossy fibres. This gating mechanism accounts for early and coarse VOR acquisition, prior to the late reflex consolidation. In addition, properly timed and sized Purkinje cell bursts allow the ratio between long-term depression and potentiation (LTD/LTP) to be finely shaped at mossy fibre-medial vestibular nuclei synapses, which optimises VOR consolidation. Tonic Purkinje cell firing maintains the consolidated VOR through time. Importantly, pauses are crucial to facilitate VOR phase-reversal learning, by reshaping previously learnt synaptic weight distributions. Altogether, these results predict that Purkinje spike burst-pause dynamics are instrumental to VOR learning and reversal adaptation.

[1]  Wade G. Regehr,et al.  Noradrenergic Control of Associative Synaptic Plasticity by Selective Modulation of Instructive Signals , 2009, Neuron.

[2]  M. Häusser,et al.  Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons , 2009, Neuron.

[3]  S G Lisberger,et al.  Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. , 2002, Journal of neurophysiology.

[4]  Duo Xu,et al.  Role of the Olivo-Cerebellar System in Timing , 2006, The Journal of Neuroscience.

[5]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[6]  Tadashi Yamazaki,et al.  Modeling memory consolidation during posttraining periods in cerebellovestibular learning , 2015, Proceedings of the National Academy of Sciences.

[7]  William Wisden,et al.  Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning , 2009, Nature Neuroscience.

[8]  E. Boyden,et al.  Cerebellum-dependent learning: the role of multiple plasticity mechanisms. , 2004, Annual review of neuroscience.

[9]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[10]  B. R. Sastry,et al.  Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. , 1996, Journal of neurophysiology.

[11]  Daniel M. Wolpert,et al.  Rhythmicity, randomness and synchrony in climbing fiber signals , 2005, Trends in Neurosciences.

[12]  Stefan Schaal,et al.  Biomimetic gaze stabilization based on feedback-error-learning with nonparametric regression networks , 2001, Neural Networks.

[13]  Jesús Alberto Garrido,et al.  Integrated neural and robotic simulations. Simulation of cerebellar neurobiological substrate for an object-oriented dynamic model abstraction process , 2014, Robotics Auton. Syst..

[14]  D Colquhoun,et al.  Deactivation and desensitization of non‐NMDA receptors in patches and the time course of EPSCs in rat cerebellar granule cells. , 1996, The Journal of physiology.

[15]  Silvia Tolu,et al.  Adaptive and Predictive Control of a Simulated Robot arm , 2013, Int. J. Neural Syst..

[16]  Farzaneh Najafi,et al.  Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice , 2014, eLife.

[17]  Javier F. Medina,et al.  Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells , 2013, Front. Neural Circuits.

[18]  Silvia Tolu,et al.  Bio-inspired adaptive feedback error learning architecture for motor control , 2012, Biological Cybernetics.

[19]  R. A. Hensbroek,et al.  Intraburst and Interburst Signaling by Climbing Fibers , 2007, The Journal of Neuroscience.

[20]  James Ashe,et al.  Role of olivocerebellar system in timing without awareness , 2011, Proceedings of the National Academy of Sciences.

[21]  C. I. De Zeeuw,et al.  The dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response , 2001, Brain Research.

[22]  James M. Bower,et al.  Model-Founded Explorations of the Roles of Molecular Layer Inhibition in Regulating Purkinje Cell Responses in Cerebellar Cortex: More Trouble for the Beam Hypothesis , 2010, Front. Cell. Neurosci..

[23]  E. D'Angelo,et al.  Different proportions of N-methyl-d-aspartate and non-N-methyl-d-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum , 1993, Neuroscience.

[24]  Kris M. Horn,et al.  Activation of climbing fibers , 2008, The Cerebellum.

[25]  Chris I. De Zeeuw,et al.  The Sleeping Cerebellum , 2017, Trends in Neurosciences.

[26]  Zhenyu Gao,et al.  Distributed synergistic plasticity and cerebellar learning , 2012, Nature Reviews Neuroscience.

[27]  A. Fuchs,et al.  Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. , 1978, Journal of neurophysiology.

[28]  Darran Yates Neurodevelopmental disorders: Getting with the reprogram , 2011, Nature Reviews Neuroscience.

[29]  Yoshiko Kojima,et al.  Encoding of action by the Purkinje cells of the cerebellum , 2015, Nature.

[30]  Mark Farrant,et al.  Differences in Synaptic GABAA Receptor Number Underlie Variation in GABA Mini Amplitude , 1997, Neuron.

[31]  Mitsuo Kawato,et al.  A computational model of four regions of the cerebellum based on feedback-error learning , 2004, Biological Cybernetics.

[32]  Thierry Nieus,et al.  A Realistic Large-Scale Model of the Cerebellum Granular Layer Predicts Circuit Spatio-Temporal Filtering Properties , 2009, Front. Cell. Neurosci..

[33]  Tadashi Yamazaki,et al.  Neural Modeling of an Internal Clock , 2005, Neural Computation.

[34]  Stephen G. Lisberger,et al.  Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys , 2008, Nature Neuroscience.

[35]  J. Bower,et al.  Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. , 2007, Journal of neurophysiology.

[36]  Masao Ito The Cerebellum And Neural Control , 1984 .

[37]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control , 1998, The European journal of neuroscience.

[38]  Eduardo Ros,et al.  Event-Driven Simulation Scheme for Spiking Neural Networks Using Lookup Tables to Characterize Neuronal Dynamics , 2006, Neural Computation.

[39]  Eduardo Ros,et al.  Cerebellar Input Configuration Toward Object Model Abstraction in Manipulation Tasks , 2011, IEEE Transactions on Neural Networks.

[40]  Giorgio Grasselli,et al.  Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells. , 2016, Cell reports.

[41]  Bruce P. Bean,et al.  Ionic Currents Underlying Spontaneous Action Potentials in Isolated Cerebellar Purkinje Neurons , 1999, The Journal of Neuroscience.

[42]  Eduardo Ros,et al.  Real-Time Spiking Neural Network: An Adaptive Cerebellar Model , 2005, IWANN.

[43]  Claudia Clopath,et al.  Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments , 2016, Scientific Reports.

[44]  M. Mauk,et al.  Learning-Induced Plasticity in Deep Cerebellar Nucleus , 2006, The Journal of Neuroscience.

[45]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[46]  Arne Møller,et al.  Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method , 1993, Brain Research.

[47]  Egidio D'Angelo,et al.  Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation , 2013, Front. Neural Circuits.

[48]  Stefan Schaal,et al.  Locally Weighted Projection Regression : An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space , 2000 .

[49]  S. Ryu,et al.  Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish , 2013, Front. Neural Circuits.

[50]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[51]  Mitsuo Kawato,et al.  Feedback-Error-Learning Neural Network for Supervised Motor Learning , 1990 .

[52]  Mitsuo Kawato,et al.  Statistical characteristics of climbing fiber spikes necessary for efficient cerebellar learning , 2001, Biological Cybernetics.

[53]  J. Leo van Hemmen,et al.  Inhibition, not excitation, is the key to multimodal sensory integration , 2008, Biological Cybernetics.

[54]  J. Goldberg,et al.  Vestibular-nerve inputs to the vestibulo-ocular reflex: a functional- ablation study in the squirrel monkey , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  M. Glickstein,et al.  The anatomy of the cerebellum , 1998, Trends in Neurosciences.

[56]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[57]  C. Batini,et al.  GABAB receptor activation of Purkinje cells in cerebellar slices , 1997, Neuroscience Research.

[58]  Masao Ito Error detection and representation in the olivo-cerebellar system , 2013, Front. Neural Circuits.

[59]  D. Rossi,et al.  Spillover-Mediated Transmission at Inhibitory Synapses Promoted by High Affinity α6 Subunit GABAA Receptors and Glomerular Geometry , 1998, Neuron.

[60]  J Ashe,et al.  Specificity of inferior olive response to stimulus timing. , 2008, Journal of neurophysiology.

[61]  D. M. Broussard,et al.  The Site of a Motor Memory Shifts with Consolidation , 2005, The Journal of Neuroscience.

[62]  J. Albus A Theory of Cerebellar Function , 1971 .

[63]  John Porrill,et al.  Cerebellar Motor Learning: When Is Cortical Plasticity Not Enough? , 2007, PLoS Comput. Biol..

[64]  Nicolas Brunel,et al.  A Cerebellar Learning Model of Vestibulo-Ocular Reflex Adaptation in Wild-Type and Mutant Mice , 2014, The Journal of Neuroscience.

[65]  P. Strata,et al.  Mossy and climbing fiber activity during phasic and tonic phenomena of sleep , 2004, Pflügers Archiv.

[66]  F. A. Miles,et al.  Plasticity in the vestibulo-ocular reflex: a new hypothesis. , 1981, Annual review of neuroscience.

[67]  Shigeru Tanaka,et al.  Computational Models of Timing Mechanisms in the Cerebellar Granular Layer , 2009, The Cerebellum.

[68]  S. D. Lac,et al.  Bidirectional Plasticity Gated by Hyperpolarization Controls the Gain of Postsynaptic Firing Responses at Central Vestibular Nerve Synapses , 2010, Neuron.

[69]  B. Schrauwen,et al.  BSA, a fast and accurate spike train encoding scheme , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[70]  Shun-ichi Amari,et al.  A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning , 2008, Journal of Computational Neuroscience.

[71]  J. Raymond,et al.  Elimination of climbing fiber instructive signals during motor learning , 2009, Nature Neuroscience.

[72]  R. R. Llinás,et al.  Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction , 2009, Neuroscience.

[73]  Matthieu Gilson,et al.  Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity , 2014, Front. Comput. Neurosci..

[74]  Chris I De Zeeuw,et al.  Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse. , 2008, Journal of neurophysiology.

[75]  David A. Robinson,et al.  Gain changes of the cat's vestibulo-ocular reflex after flocculus deactivation , 2004, Experimental Brain Research.

[76]  R. Silver,et al.  Spillover of Glutamate onto Synaptic AMPA Receptors Enhances Fast Transmission at a Cerebellar Synapse , 2002, Neuron.

[77]  Mark C. W. van Rossum,et al.  A Novel Spike Distance , 2001, Neural Computation.

[78]  D. Linden,et al.  Polarity of Long-Term Synaptic Gain Change Is Related to Postsynaptic Spike Firing at a Cerebellar Inhibitory Synapse , 1998, Neuron.

[79]  Shane A. Heiney,et al.  Cerebellar Signatures of Vestibulo-Ocular Reflex Motor Learning , 2003, The Journal of Neuroscience.

[80]  R. Leigh,et al.  The neurology of eye movements , 1984 .

[81]  Susumu Tonegawa,et al.  Persistent Multiple Climbing Fiber Innervationof Cerebellar Purkinje Cellsin Mice Lacking mGluR1 , 1997, Neuron.

[82]  Koichi Mori,et al.  Across-frequency nonlinear inhibition by GABA in processing of interaural time difference , 1997, Hearing Research.

[83]  William Wisden,et al.  Studying Cerebellar Circuits by Remote Control of Selected Neuronal Types with GABAA Receptors , 2009, Front. Mol. Neurosci..

[84]  John P Welsh,et al.  Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[85]  S. Khosrovani,et al.  Olivary subthreshold oscillations and burst activity revisited , 2012, Front. Neural Circuits.

[86]  R. Joho,et al.  Purkinje-Cell-Restricted Restoration of Kv3.3 Function Restores Complex Spikes and Rescues Motor Coordination in Kcnc3 Mutants , 2008, The Journal of Neuroscience.

[87]  A G Barto,et al.  Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. , 1997, Journal of neurophysiology.

[88]  Erik De Schutter,et al.  A large-scale model of the cerebellar cortex using PGENESIS , 2000, Neurocomputing.

[89]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[90]  D. Kleinfeld,et al.  Reversing cerebellar long-term depression , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[91]  W. T. Thach Somatosensory receptive fields of single units in cat cerebellar cortex. , 1967, Journal of neurophysiology.

[92]  Eduardo Ros,et al.  Cerebellarlike Corrective Model Inference Engine for Manipulation Tasks , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[93]  Chris I. De Zeeuw,et al.  Climbing Fiber Burst Size and Olivary Sub-threshold Oscillations in a Network Setting , 2012, PLoS Comput. Biol..

[94]  Giorgio Grasselli,et al.  Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD. , 2013, Journal of neurophysiology.

[95]  N. Mano,et al.  Changes of Simple and Complex Spike Activity of Cerebellar Purkinje Cells with Sleep and Waking , 1970, Science.

[96]  Mancia Anguita,et al.  A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[97]  Jonathan D Victor,et al.  Spike train metrics , 2005, Current Opinion in Neurobiology.

[98]  Naiphinich Kotchabhakdi,et al.  Developmental Changes of Inhibitory Synaptic Currents in Cerebellar Granule Neurons: Role of GABAA Receptor α6 Subunit , 1996, The Journal of Neuroscience.

[99]  P. Dean,et al.  Synaptic Plasticity in Medial Vestibular Nucleus Neurons: Comparison with Computational Requirements of VOR Adaptation , 2010, PloS one.

[100]  Shogo Ohmae,et al.  Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice , 2015, Nature Neuroscience.

[101]  W Hamish Mehaffey,et al.  Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output. , 2007, Journal of neurophysiology.

[102]  K. Doya,et al.  Electrophysiological properties of inferior olive neurons: A compartmental model. , 1999, Journal of neurophysiology.

[103]  Chris I. De Zeeuw,et al.  Climbing Fiber Input Shapes Reciprocity of Purkinje Cell Firing , 2013, Neuron.

[104]  M. Fujita,et al.  Adaptive filter model of the cerebellum , 1982, Biological Cybernetics.

[105]  Pablo Varona,et al.  Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns , 2013, Front. Neural Circuits.

[106]  T. Brashers-Krug,et al.  Functional Stages in the Formation of Human Long-Term Motor Memory , 1997, The Journal of Neuroscience.

[107]  R. Llinás,et al.  On the cerebellum and motor learning , 1993, Current Opinion in Neurobiology.

[108]  Germund Hesslow,et al.  Cerebellar control of the inferior olive , 2008, The Cerebellum.

[109]  G. Jones,et al.  Extreme vestibulo‐ocular adaptation induced by prolonged optical reversal of vision , 1976, The Journal of physiology.

[110]  Leonie Welberg,et al.  Cerebellum: An olive branch to two theories , 2009, Nature Reviews Neuroscience.

[111]  R. Huganir,et al.  Reevaluating the Role of LTD in Cerebellar Motor Learning , 2011, Neuron.

[112]  Zhanmin Lin,et al.  Differential Purkinje cell simple spike activity and pausing behavior related to cerebellar modules. , 2015, Journal of neurophysiology.

[113]  James V. Stone,et al.  Recurrent cerebellar architecture solves the motor-error problem , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[114]  V Taglietti,et al.  Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. , 1998, Journal of neurophysiology.

[115]  James V. Stone,et al.  Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[116]  M. Häusser,et al.  The Origin of the Complex Spike in Cerebellar Purkinje Cells , 2008, The Journal of Neuroscience.

[117]  Shigeo Watanabe,et al.  Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study , 2001, Brain Research.

[118]  Rhea R. Kimpo,et al.  Gating of neural error signals during motor learning , 2014, eLife.

[119]  Edward S Boyden,et al.  Distinct patterns of stimulus generalization of increases and decreases in VOR gain. , 2005, Journal of neurophysiology.

[120]  Erik De Schutter,et al.  Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells , 2018, bioRxiv.

[121]  P. Perrin,et al.  How to perform the skull vibration-induced nystagmus test (SVINT). , 2016, European annals of otorhinolaryngology, head and neck diseases.

[122]  Thierry Nieus,et al.  An integrate-and-fire model of a cerebellar granule cell , 2004, Neurocomputing.

[123]  Tadashi Yamazaki,et al.  The cerebellum as a liquid state machine , 2007, Neural Networks.

[124]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[125]  Hiroshi Nishiyama Dendritic Translocation of Climbing Fibers: A New Face of Old Phenomenon , 2014, The Cerebellum.

[126]  R W Baloh,et al.  Visual-vestibular interaction in humans during active and passive, vertical head movement. , 1993, Journal of vestibular research : equilibrium & orientation.

[127]  B. R. Sastry,et al.  Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. , 2000, Journal of neurophysiology.

[128]  Arman Sargolzaei,et al.  Sensorimotor control: computing the immediate future from the delayed present , 2016, BMC Bioinformatics.

[129]  Timothy J. Ebner,et al.  The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning , 2015, The Cerebellum.

[130]  S. Lisberger,et al.  Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. , 1990, Journal of neurophysiology.

[131]  R. Shadmehr,et al.  Neural correlates of motor memory consolidation. , 1997, Science.

[132]  Tadashi Yamazaki,et al.  Stimulus-Dependent State Transition between Synchronized Oscillation and Randomly Repetitive Burst in a Model Cerebellar Granular Layer , 2011, PLoS Comput. Biol..

[133]  W. T. Thach,et al.  Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. , 1995, Journal of neurophysiology.

[134]  Bruce Bridgeman,et al.  Global VOR gain adaptation during near fixation to foveal targets. , 2007, Human movement science.

[135]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[136]  Eduardo Ros,et al.  A real-time spiking cerebellum model for learning robot control , 2008, Biosyst..

[137]  Soichi Nagao,et al.  Effects of reversible pharmacological shutdown of cerebellar flocculus on the memory of long-term horizontal vestibulo-ocular reflex adaptation in monkeys , 2010, Neuroscience Research.

[138]  E. De Schutter,et al.  Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. , 1998, Journal of neurophysiology.

[139]  Paolo Dario,et al.  Adaptive gaze stabilization through cerebellar internal models in a humanoid robot , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[140]  R. L. Nó,et al.  VESTIBULO-OCULAR REFLEX ARC , 1933 .

[141]  Eduardo Ros,et al.  Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning , 2016, The Cerebellum.

[142]  M. Mauk,et al.  Simulations of Cerebellar Motor Learning: Computational Analysis of Plasticity at the Mossy Fiber to Deep Nucleus Synapse , 1999, The Journal of Neuroscience.

[143]  J. Nadal,et al.  Optimal Information Storage and the Distribution of Synaptic Weights Perceptron versus Purkinje Cell , 2004, Neuron.

[144]  S. G. Lisberger,et al.  Motor learning in a recurrent network model based on the vestibulo–ocular reflex , 1992, Nature.

[145]  V Taglietti,et al.  Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells: Experimental Evidence and Modeling of a Slow K+-Dependent Mechanism , 2001, The Journal of Neuroscience.

[146]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[147]  Eduardo Ros,et al.  Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model , 2016, Front. Comput. Neurosci..

[148]  Javier F. Medina,et al.  Computer simulation of cerebellar information processing , 2000, Nature Neuroscience.

[149]  Silvia Tolu,et al.  Adaptive cerebellar Spiking Model Embedded in the Control Loop: Context Switching and Robustness against noise , 2011, Int. J. Neural Syst..

[150]  Thierry Nieus,et al.  LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. , 2006, Journal of neurophysiology.

[151]  Farzaneh Najafi,et al.  Trial-by-trial coding of instructive signals in the cerebellum: Insights from eyeblink conditioning in mice , 2014 .

[152]  E. D’Angelo,et al.  Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum , 2001, Nature Neuroscience.

[153]  H. Sompolinsky,et al.  Purkinje cells in awake behaving animals operate at the upstate membrane potential , 2006, Nature Neuroscience.

[154]  Eduardo Ros,et al.  Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation , 2014, Front. Comput. Neurosci..

[155]  Paolo Dario,et al.  A comparison between two bio-inspired adaptive models of Vestibulo-Ocular Reflex (VOR) implemented on the iCub robot , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[156]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[157]  M. Ito Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. , 1982, Annual review of neuroscience.

[158]  Eduardo Ros,et al.  Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks , 2017, Front. Neuroinform..

[159]  Roger D. Traub,et al.  High-Frequency Network Oscillations in Cerebellar Cortex , 2008, Neuron.

[160]  C. Hansel,et al.  The Making of a Complex Spike: Ionic Composition and Plasticity , 2002, Annals of the New York Academy of Sciences.