Unconventional Initiation of PINK1/Parkin Mitophagy by Optineurin

Cargo sequestration is a fundamental step of selective autophagy in which cells generate a double membrane structure termed an autophagosome on the surface of cargoes. NDP52, TAX1BP1 and p62 bind FIP200 which recruits the ULK1/2 complex to initiate autophagosome formation on cargoes. How OPTN initiates autophagosome formation during selective autophagy remains unknown despite its importance in neurodegeneration. Here, we uncover an unconventional path of PINK1/Parkin mitophagy initiation by OPTN that does not begin with FIP200 binding nor require the ULK1/2 kinases. Using gene-edited cell lines and in vitro reconstitutions, we show that OPTN utilizes the kinase TBK1 which binds directly to the class III phosphatidylinositol 3-kinase complex I to initiate mitophagy. During NDP52 mitophagy initiation, TBK1 is functionally redundant with ULK1/2, classifying TBK1’s role as a selective autophagy initiating kinase. Overall, this work reveals that OPTN mitophagy initiation is mechanistically distinct and highlights the mechanistic plasticity of selective autophagy pathways.

[1]  J. Hurley,et al.  Structural basis for ATG9A recruitment to the ULK1 complex in mitophagy initiation , 2022, bioRxiv.

[2]  V. Deretic,et al.  A guide to membrane atg8ylation and autophagy with reflections on immunity , 2022, The Journal of cell biology.

[3]  N. Mizushima,et al.  A pulse-chasable reporter processing assay for mammalian autophagic flux with HaloTag , 2022, bioRxiv.

[4]  J. Harper,et al.  Mechanisms underlying ubiquitin-driven selective mitochondrial and bacterial autophagy. , 2022, Molecular cell.

[5]  S. Martens,et al.  Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation , 2021, Nature Communications.

[6]  V. Deretic,et al.  Atg8ylation as a general membrane stress and remodeling response , 2021, Cell stress.

[7]  Chao Peng,et al.  Structural and biochemical advances on the recruitment of the autophagy-initiating ULK and TBK1 complexes by autophagy receptor NDP52 , 2021, Science Advances.

[8]  T. Lamark,et al.  Mechanisms of Selective Autophagy. , 2021, Annual review of cell and developmental biology.

[9]  Roger L. Williams,et al.  Phosphoproteomic identification of ULK substrates reveals VPS15‐dependent ULK/VPS34 interplay in the regulation of autophagy , 2021, The EMBO journal.

[10]  S. Tooze,et al.  Membrane supply and remodeling during autophagosome biogenesis. , 2021, Current opinion in cell biology.

[11]  D. P. Valverde,et al.  A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis , 2021, Proceedings of the National Academy of Sciences.

[12]  C. Behrends,et al.  ATG4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system. , 2021, Molecular cell.

[13]  Jianping Liu,et al.  Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation , 2021, Nature Communications.

[14]  J. Hurley,et al.  Reconstitution of cargo-induced LC3 lipidation in mammalian selective autophagy , 2021, Science Advances.

[15]  C. Behrends,et al.  Atg4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system , 2020, bioRxiv.

[16]  Y. Sugita,et al.  Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion , 2020, Nature Structural & Molecular Biology.

[17]  N. Mizushima,et al.  Autophagy in Human Diseases. , 2020, The New England journal of medicine.

[18]  N. Grishin,et al.  Structure, lipid scrambling activity and role in autophagosome formation of ATG9A , 2020, Nature Structural & Molecular Biology.

[19]  G. Hummer,et al.  Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation , 2020, Science.

[20]  Keiji Tanaka,et al.  Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy , 2020, The Journal of cell biology.

[21]  V. Deretic Faculty Opinions recommendation of ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer. , 2020, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[22]  J. Hurley,et al.  The autophagy adaptor NDP52 and the FIP200 coiled-coil allosterically activate ULK1 complex membrane recruitment , 2020, bioRxiv.

[23]  Florian Weissmann,et al.  GoldenBac: a simple, highly efficient, and widely applicable system for construction of multi-gene expression vectors for use with the baculovirus expression vector system , 2020, BMC Biotechnology.

[24]  S. Martens,et al.  Activation and targeting of ATG8 protein lipidation , 2020, Cell Discovery.

[25]  T. Melia,et al.  Autophagosome biogenesis: From membrane growth to closure , 2020, The Journal of cell biology.

[26]  N. Mizushima The ATG conjugation systems in autophagy. , 2019, Current opinion in cell biology.

[27]  T. Maniatis,et al.  Effects of ALS-associated TANK binding kinase 1 mutations on protein–protein interactions and kinase activity , 2019, Proceedings of the National Academy of Sciences.

[28]  J. Hurley,et al.  ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer , 2019, bioRxiv.

[29]  James H. Stronge,et al.  Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform , 2019, Developmental cell.

[30]  R. Youle Mitochondria—Striking a balance between host and endosymbiont , 2019, Science.

[31]  Lucas von Chamier,et al.  Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins , 2019, The Journal of Biological Chemistry.

[32]  G. Schiavo,et al.  Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy , 2019, Molecular cell.

[33]  J. Hurley,et al.  FIP200 Claw Domain Binding to p62 Promotes Autophagosome Formation at Ubiquitin Condensates , 2019, Molecular cell.

[34]  Elsje G. Otten,et al.  The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria , 2019, Molecular cell.

[35]  T. Walz,et al.  ATG2 transports lipids to promote autophagosome biogenesis , 2019, The Journal of cell biology.

[36]  A. Snijders,et al.  ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ , 2019, The Journal of cell biology.

[37]  T. Otomo,et al.  The autophagic membrane tether ATG2A transfers lipids between membranes , 2019, bioRxiv.

[38]  M. Lazarou,et al.  LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy , 2019, Nature Communications.

[39]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[40]  D. Sabatini,et al.  RAB7A phosphorylation by TBK1 promotes mitophagy via the PINK-PARKIN pathway , 2018, Science Advances.

[41]  Y. Ohsumi,et al.  The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation , 2018, Proceedings of the National Academy of Sciences.

[42]  R. Aebersold,et al.  Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex , 2018, Proceedings of the National Academy of Sciences.

[43]  I. Dikic,et al.  Mechanism and medical implications of mammalian autophagy , 2018, Nature reviews. Molecular cell biology.

[44]  C. Kraft,et al.  Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores , 2018, The Journal of cell biology.

[45]  D. Klionsky,et al.  Cargo recognition and degradation by selective autophagy , 2018, Nature Cell Biology.

[46]  S. Tooze,et al.  A molecular perspective of mammalian autophagosome biogenesis , 2018, The Journal of Biological Chemistry.

[47]  M. Dong,et al.  Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation , 2017, Autophagy.

[48]  Z. Yue,et al.  ULK1-mediated phosphorylation of ATG14 promotes autophagy and is impaired in Huntington’s disease models , 2016, Molecular Neurodegeneration.

[49]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[50]  Jianping Liu,et al.  Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins , 2016, Nature Communications.

[51]  E. Holzbaur,et al.  Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy , 2016, Proceedings of the National Academy of Sciences.

[52]  Sebastian A. Wagner,et al.  Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria , 2016, Proceedings of the National Academy of Sciences.

[53]  D. Voytas,et al.  The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14 , 2016, Autophagy.

[54]  N. Mizushima,et al.  Atg13 Is Essential for Autophagy and Cardiac Development in Mice , 2015, Molecular and Cellular Biology.

[55]  J. Hurley,et al.  Structure of the Human Atg13-Atg101 HORMA Heterodimer: an Interaction Hub within the ULK1 Complex. , 2015, Structure.

[56]  J. Harper,et al.  The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. , 2015, Molecular cell.

[57]  S. Martens,et al.  Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy , 2015, eLife.

[58]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[59]  S. Wesselborg,et al.  Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells , 2015, Autophagy.

[60]  John M Asara,et al.  Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. , 2015, Molecular cell.

[61]  D. Komander,et al.  Mechanism of phospho-ubiquitin induced PARKIN activation , 2015, Nature.

[62]  Hironori Suzuki,et al.  Structure of the Atg101–Atg13 complex reveals essential roles of Atg101 in autophagy initiation , 2015, Nature Structural &Molecular Biology.

[63]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[64]  N. Mizushima,et al.  Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells , 2014, Journal of Cell Science.

[65]  S. Gygi,et al.  Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. , 2014, Molecular cell.

[66]  E. Holzbaur,et al.  Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation , 2014, Proceedings of the National Academy of Sciences.

[67]  Michael I. Wilson,et al.  WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12–5-16L1 , 2014, Molecular cell.

[68]  Yuquan Wei,et al.  A PCR Based Protocol for Detecting Indel Mutations Induced by TALENs and CRISPR/Cas9 in Zebrafish , 2014, PloS one.

[69]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[70]  Soojay Banerjee,et al.  PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity , 2014, The Journal of cell biology.

[71]  M. Komatsu,et al.  A Cluster of Thin Tubular Structures Mediates Transformation of the Endoplasmic Reticulum to Autophagic Isolation Membrane , 2014, Molecular and Cellular Biology.

[72]  S. Walker,et al.  Dynamic association of the ULK1 complex with omegasomes during autophagy induction , 2013, Journal of Cell Science.

[73]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[74]  J. Hurley,et al.  A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy , 2013, Proceedings of the National Academy of Sciences.

[75]  Rie Ichikawa,et al.  Atg9 vesicles are an important membrane source during early steps of autophagosome formation , 2012, The Journal of cell biology.

[76]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[77]  M. Schaller,et al.  Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction , 2011, Autophagy.

[78]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[79]  Atsushi Miyawaki,et al.  A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. , 2011, Chemistry & biology.

[80]  Sebastian A. Wagner,et al.  Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth , 2011, Science.

[81]  C. Thompson,et al.  Ammonia-induced autophagy is independent of ULK1/ULK2 kinases , 2011, Proceedings of the National Academy of Sciences.

[82]  T. Richmond,et al.  Robots, pipelines, polyproteins: Enabling multiprotein expression in prokaryotic and eukaryotic cells , 2011, Journal of Structural Biology.

[83]  Daniel J. Klionsky,et al.  An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis , 2010, The Journal of cell biology.

[84]  D. Klionsky,et al.  Eaten alive: a history of macroautophagy , 2010, Nature Cell Biology.

[85]  N. Mizushima,et al.  Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins , 2010, Autophagy.

[86]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[87]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[88]  T. Noda,et al.  A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation , 2009, Nature Cell Biology.

[89]  S. Bloor,et al.  The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria , 2009, Nature Immunology.

[90]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[91]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[92]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[93]  Gareth Griffiths,et al.  Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum , 2008, The Journal of cell biology.

[94]  J. Guan,et al.  FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells , 2008, The Journal of cell biology.

[95]  S. Tooze,et al.  siRNA Screening of the Kinome Identifies ULK1 as a Multidomain Modulator of Autophagy* , 2007, Journal of Biological Chemistry.

[96]  Y. Ohsumi,et al.  Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion , 2007, Cell.

[97]  F. Randow,et al.  SINTBAD, a novel component of innate antiviral immunity, shares a TBK1‐binding domain with NAP1 and TANK , 2007, The EMBO journal.

[98]  M. Lazarou,et al.  Analysis of the Assembly Profiles for Mitochondrial- and Nuclear-DNA-Encoded Subunits into Complex I , 2007, Molecular and Cellular Biology.

[99]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[100]  R. Ritch,et al.  Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in Optineurin , 2002, Science.

[101]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[102]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[103]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[104]  S. Martens,et al.  Studies of Receptor-Atg8 Interactions During Selective Autophagy. , 2019, Methods in molecular biology.

[105]  T. Osawa,et al.  Atg2 mediates direct lipid transfer between membranes for autophagosome formation , 2019, Nature Structural & Molecular Biology.