On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models

A mathematical analysis of local and nonlocal phase-field models of tumor growth is presented that includes time-dependent Darcy–Forchheimer–Brinkman models of convective velocity fields and models of long-range cell interactions. A complete existence analysis is provided. In addition, a parameter-sensitivity analysis is described that quantifies the sensitivity of key quantities of interest to changes in parameter values. Two sensitivity analyses are examined; one employing statistical variances of model outputs and another employing the notion of active subspaces based on existing observational data. Remarkably, the two approaches yield very similar conclusions on sensitivity for certain quantities of interest. The work concludes with the presentation of numerical approximations of solutions of the governing equations and results of numerical experiments on tumor growth produced using finite element discretizations of the full tumor model for representative cases.

[1]  Kumbakonam R. Rajagopal,et al.  ON A HIERARCHY OF APPROXIMATE MODELS FOR FLOWS OF INCOMPRESSIBLE FLUIDS THROUGH POROUS SOLIDS , 2007 .

[2]  Harald Garcke,et al.  On a Cahn–Hilliard–Darcy System for Tumour Growth with Solution Dependent Source Terms , 2016, 1611.00234.

[3]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[4]  Harald Garcke,et al.  A coupled surface-Cahn--Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes , 2015, 1509.03655.

[5]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[6]  Alissa M. Weaver,et al.  Mathematical modeling of cancer: the future of prognosis and treatment. , 2005, Clinica chimica acta; international journal of clinical chemistry.

[7]  Kristoffer G. van der Zee,et al.  Numerical simulation of a thermodynamically consistent four‐species tumor growth model , 2012, International journal for numerical methods in biomedical engineering.

[8]  V. Cristini,et al.  Nonlinear simulation of tumor growth , 2003, Journal of mathematical biology.

[9]  Michael Winkler,et al.  Global Weak Solutions in a PDE-ODE System Modeling Multiscale Cancer Cell Invasion , 2014, SIAM J. Math. Anal..

[10]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[11]  Christina Surulescu,et al.  On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation , 2017 .

[12]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[13]  Barbara Wohlmuth,et al.  A Study of the Time Constant in Unsteady Porous Media Flow Using Direct Numerical Simulation , 2014, Transport in Porous Media.

[14]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[15]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[16]  S. Salsa Partial Differential Equations in Action , 2015 .

[17]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions , 2009 .

[18]  Maurizio Grasselli,et al.  On the Cahn–Hilliard–Brinkman system , 2014, 1402.6195.

[19]  Harald Garcke,et al.  A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport , 2015, 1508.00437.

[20]  K. Lam,et al.  Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis , 2017, European Journal of Applied Mathematics.

[21]  V. Cristini,et al.  Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method , 2005, Bulletin of mathematical biology.

[22]  Herbert Gajewski,et al.  On a nonlocal phase separation model , 2003 .

[23]  Xiangrong Li,et al.  Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.

[24]  Paul G. Constantine,et al.  Global sensitivity metrics from active subspaces , 2015, Reliab. Eng. Syst. Saf..

[25]  Luigi Preziosi,et al.  Mechanics in Tumor Growth , 2007 .

[26]  Songmu Zheng,et al.  Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth , 2014, 1409.0364.

[27]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[28]  Harald Garcke,et al.  Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis , 2018, Journal of Differential Equations.

[29]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[30]  Hongxing Rui,et al.  Mixed Element Method for Two-Dimensional Darcy-Forchheimer Model , 2012, J. Sci. Comput..

[31]  Paul G. Constantine,et al.  Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.

[32]  Ernesto A. B. F. Lima,et al.  A hybrid ten-species phase-field model of tumor growth , 2014 .

[33]  J. Lowengrub,et al.  Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth , 2005 .

[34]  Jacques Simon,et al.  On the Existence of the Pressure for Solutions of the Variational Navier—Stokes Equations , 1999 .

[35]  Hans F. Burcharth,et al.  On the one-dimensional steady and unsteady porous flow equations , 1995 .

[36]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[37]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[38]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[39]  John S. Lowengrub,et al.  An improved geometry-aware curvature discretization for level set methods: Application to tumor growth , 2006, J. Comput. Phys..

[40]  Hsiang Wang,et al.  Gravity waves over porous bottoms , 1991 .

[41]  Edriss S. Titi,et al.  Analysis of a mixture model of tumor growth , 2012, European Journal of Applied Mathematics.

[42]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[43]  M. Chaplain,et al.  Multiscale mathematical modeling of vascular tumor growth: An exercise in transatlantic cooperation , 2010 .

[44]  Vittorio Cristini,et al.  Multiscale cancer modeling. , 2010, Annual review of biomedical engineering.

[45]  Shriram Srinivasan,et al.  A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations , 2014 .

[46]  Franck Boyer,et al.  Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models , 2012 .

[47]  S. Salsa,et al.  Partial Differential Equations in Action: From Modelling to Theory , 2010 .

[48]  D L S McElwain,et al.  A history of the study of solid tumour growth: The contribution of mathematical modelling , 2004, Bulletin of mathematical biology.

[49]  E. Rocca,et al.  On a Diffuse Interface Model for Tumour Growth with Non-local Interactions and Degenerate Mobilities , 2017, 1703.03553.

[50]  P. Maini,et al.  MODELLING THE RESPONSE OF VASCULAR TUMOURS TO CHEMOTHERAPY: A MULTISCALE APPROACH , 2006 .

[51]  Elisabetta Rocca,et al.  On a diffuse interface model of tumour growth , 2014, European Journal of Applied Mathematics.

[52]  M. Grasselli,et al.  Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system , 2011, 1101.3906.

[53]  J. Tinsley Oden,et al.  Adaptive multiscale predictive modelling , 2018, Acta Numerica.

[54]  Yusheng Feng,et al.  Toward Predictive Multiscale Modeling of Vascular Tumor Growth , 2015, Archives of Computational Methods in Engineering.

[55]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[56]  Harald Garcke,et al.  Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport , 2015, European Journal of Applied Mathematics.

[57]  M. Grasselli,et al.  A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility , 2013, 1303.6446.

[58]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[59]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[60]  Paul Glendinning,et al.  From finite to infinite dimensional dynamical systems , 2001 .

[61]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[62]  M. Grasselli,et al.  Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems , 2013, 1301.2346.

[63]  C. Schaller,et al.  MATHEMATICAL MODELLING OF GLIOBLASTOMA TUMOUR DEVELOPMENT: A REVIEW , 2005 .

[64]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[65]  Zhangxin Chen,et al.  Derivation of the Forchheimer Law via Homogenization , 2001 .

[66]  Steven M. Wise,et al.  An adaptive multigrid algorithm for simulating solid tumor growth using mixture models , 2011, Math. Comput. Model..

[67]  Nicola Bellomo,et al.  On the foundations of cancer modelling: Selected topics, speculations, and perspectives , 2008 .

[68]  Peter W. Bates,et al.  The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation , 2005 .

[69]  T E Yankeelov,et al.  Calibration of Multi-Parameter Models of Avascular Tumor Growth Using Time Resolved Microscopy Data , 2018, Scientific Reports.

[70]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..

[71]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[72]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[73]  M. Grasselli,et al.  The nonlocal Cahn–Hilliard–Hele–Shaw system with logarithmic potential , 2018, Nonlinearity.

[74]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. , 2008 .

[75]  Giambattista Giacomin,et al.  Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits , 1997, comp-gas/9705001.

[76]  Kevin R. Hall,et al.  Comparison of oscillatory and stationary flow through porous media , 1995 .

[77]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[78]  Peter W. Bates,et al.  The Neumann boundary problem for a nonlocal Cahn–Hilliard equation , 2005 .

[79]  Xinfu Chen,et al.  ON SOME NONLOCAL EVOLUTION EQUATIONS ARISING IN MATERIALS SCIENCE , 2008 .

[80]  J. Tinsley Oden,et al.  Analysis and numerical solution of stochastic phase‐field models of tumor growth , 2015 .

[81]  Lebowitz,et al.  Exact macroscopic description of phase segregation in model alloys with long range interactions. , 1996, Physical review letters.

[82]  Harald Garcke,et al.  Global weak solutions and asymptotic limits of a Cahn--Hilliard--Darcy system modelling tumour growth , 2016, 1608.08758.

[83]  M. Chaplain,et al.  MATHEMATICAL MODELLING OF CANCER INVASION: THE IMPORTANCE OF CELL–CELL ADHESION AND CELL–MATRIX ADHESION , 2011 .

[84]  Walter A. Strauss,et al.  On continuity of functions with values in various Banach spaces , 1966 .

[85]  Ciprian G. Gal,et al.  The nonlocal Cahn–Hilliard equation with singular potential: Well-posedness, regularity and strict separation property , 2017 .

[86]  L. Evans,et al.  Partial Differential Equations , 1941 .

[87]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[88]  T. Hillen,et al.  A non-local model for cancer stem cells and the tumor growth paradox , 2015, bioRxiv.

[89]  Cheng Wang,et al.  A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation , 2014, Numerische Mathematik.

[90]  L. Preziosi,et al.  Modelling and mathematical problems related to tumor evolution and its interaction with the immune system , 2000 .

[91]  John S. Lowengrub,et al.  A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth , 2008, J. Sci. Comput..

[92]  M. Grasselli,et al.  Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials , 2012, 1201.6303.