Properties of Cu/Au Schottky contacts on InGaP layer

We use Auger electron spectroscopy (AES) measurements to obtain elemental distributions for Cu/Au Schottky contacts to an InGaP layer in as-deposited and thermally annealed samples. The AES depth profile shows an obvious Cu layer with no apparent interdiffusion between the Cu and the InGaP layers in either the as-deposited samples or in the samples annealed at 450 °C. However, when the annealing temperature reached 500 °C, the metallic Cu layer was released, and a distinct interdiffusion between the Cu and the InGaP layers is observed. Metallic Cu and Au intermixed to form a stable intermetallic region. Below this intermetallic region, an interaction region, composed mainly of Cu and P, is observed. The formation of this region is attributable to the diffusion of Cu into the InGaP layer, and is responsible for the thermal degradation of Cu/Au Schottky contacts to the InGaP layer. In the deep-level transient spectroscopy spectra, we find an obvious trap at 150 K. This was determined to be a native trap tha...

[1]  Ching-Ting Lee,et al.  Microstructure evolution and failure mechanism for Cu/Au Schottky contacts to InGaP layer , 2002 .

[2]  Ching-Ting Lee,et al.  Investigation of the thermal degradation mechanism for Cu/Au Schottky contacts to the InGaP layer , 2002 .

[3]  L. Laih,et al.  On the multiple negative-differential-resistance (MNDR) InGaP-GaAs resonant tunneling bipolar transistors , 2001 .

[4]  E. Chang,et al.  Thermal stability of Cu/Ta/GaAs multilayers , 2000 .

[5]  Y. Lin,et al.  Study of InGaP/GaAs/InGaP MSM photodetectors using indium-tin-oxide as transparent and antireflection Schottky electrode , 1999 .

[6]  E. Harmon,et al.  High voltage GaInP/GaAs dual-material Schottky rectifiers , 1997 .

[7]  Y. Tu,et al.  High performances and reliability of novel GaAs MSM photodetectors with InGaP buffer and capping layers , 1997 .

[8]  Y. Takanashi Characterization of traps in GaAs/W Schottky diodes by optical and electrical deep‐level transient spectroscopy methods , 1996 .

[9]  M. Nathan,et al.  Characterization of interface charge at Ga0.52In0.48P/GaAs junctions using current–voltage and capacitance–voltage measurements , 1996 .

[10]  R. Walters,et al.  Degradation and annealing of electron‐irradiated diffused junction InP solar cells , 1995 .

[11]  Y. Tu,et al.  multiquantum barrier structures prepared by low-pressure organometallic vapor phase epitaxy , 1995 .

[12]  H. Kwon,et al.  Investigation of electrical properties and stability of Schottky contacts on (NH4)2Sx‐treated n‐ and p‐type In0.5Ga0.5P , 1995 .

[13]  G. Wicks,et al.  Phosphorus‐vacancy‐related deep levels in GaInP layers , 1995 .

[14]  M. Zazoui,et al.  Electronic transport through semiconductor barriers , 1993 .

[15]  D. Look,et al.  Semi-insulating Nature of Gas Source Molecular Beam Epitaxial InGaP Grown at Very Low Temperatures , 1993 .

[16]  G. Y. Robinson,et al.  Measurement of Schottky barrier energy on InGaP and InGaAlP films lattice matched to GaAs , 1992 .

[17]  S. Lester,et al.  High‐efficiency InGaP light‐emitting diodes on GaP substrates , 1991 .

[18]  Jun-ichi Hashimoto,et al.  Effects of strained‐layer structures on the threshold current density of AlGaInP/GaInP visible lasers , 1991 .

[19]  S. C. Palmateer,et al.  GaInP mass transport and GaInP/GaAs buried‐heterostructure lasers , 1990 .

[20]  G. Olsen,et al.  Vapor‐grown InGaP/GaAs solar cells , 1978 .

[21]  M. V. Stepanov,et al.  The growth rate evolution versus substrate temperature and V/III ratio during GaN MBE using ammonia , 1999 .

[22]  N. Yeh,et al.  Thermal reliability and characterization of InGaP Schottky contact with Ti/Pt/Au metals , 1997 .