Implementation of interior point methods for mixed semidefinite and second order cone optimization problems

There is a large number of design choices to be made in the implementation of the primal-dual interior point method for mixed semidefinite and second order cone optimization. This article presents such issues in a unified framework whenever possible. However, semidefinite and second order cone components are sometimes treated separately to highlight the differences that are necessary for efficient implementations. While this article provides a comparison of choices made by different research groups, it is also the first article to provide an elaborate discussion of the implementation in SeDuMi.

[1]  J. Sturm Similarity and other spectral relations for symmetric cones , 2000 .

[2]  Shuzhong Zhang,et al.  On a Wide Region of Centers and Primal-Dual Interior Point Algorithms for Linear Programming , 1997, Math. Oper. Res..

[3]  Stefan Schmieta,et al.  The DIMACS library of semidefinite-quadratic-linear programs , 1999 .

[4]  F. Potra,et al.  Interior-point methods for semidefinite programming , 1997 .

[5]  Stephen J. Wright,et al.  A superquadratic infeasible-interior-point method for linear complementarity problems , 1994, Math. Program..

[6]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[7]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[8]  M. Overton,et al.  SDPPACK User''s Guide -- Version 0.9 Beta for Matlab 5.0. , 1997 .

[9]  Alan George,et al.  The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..

[10]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[11]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[12]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[13]  Z. Luo,et al.  Conic convex programming and self-dual embedding , 1998 .

[14]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[15]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[16]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[17]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[18]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[19]  Masakazu Kojima,et al.  A Predictor-corrector Interior-point Algorithm for the Semidenite Linear Complementarity Problem Using the Alizadeh-haeberly-overton Search Direction , 1996 .

[20]  Mauricio G. C. Resende,et al.  An implementation of Karmarkar's algorithm for linear programming , 1989, Math. Program..

[21]  Levent Tunçel,et al.  Characterization of the barrier parameter of homogeneous convex cones , 1998, Math. Program..

[22]  Robert M. Freund,et al.  Interior point methods : current status and future directions , 1996 .

[23]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[24]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[25]  Yinyu Ye,et al.  A simplified homogeneous and self-dual linear programming algorithm and its implementation , 1996, Ann. Oper. Res..

[26]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[27]  Jacek Gondzio,et al.  Implementation of Interior Point Methods for Large Scale Linear Programming , 1996 .

[28]  Levent Tunçel,et al.  Primal-Dual Symmetry and Scale Invariance of Interior-Point Algorithms for Convex Optimization , 1998, Math. Oper. Res..

[29]  Philip E. Gill,et al.  Practical optimization , 1981 .

[30]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .

[31]  Hans Frenk,et al.  High performance optimization , 2000 .

[32]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[33]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[34]  Josef Stoer,et al.  Analysis of infeasible-interior-point paths arising with semidefinite linear complementarity problems , 2004, Math. Program..

[35]  Josef Stoer,et al.  On the complexity of following the central path of linear programs by linear extrapolation II , 1991, Math. Program..

[36]  L. Faybusovich A Jordan-algebraic approach to potential-reduction algorithms , 2002 .

[37]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[38]  MASAYUKI SHIDA,et al.  Existence and Uniqueness of Search Directions in Interior-Point Algorithms for the SDP and the Monotone SDLCP , 1998, SIAM J. Optim..

[39]  Renato D. C. Monteiro,et al.  General Interior-Point Maps and Existence of Weighted Paths for Nonlinear Semidefinite Complementarity Problems , 2000, Math. Oper. Res..

[40]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[41]  Shuzhong Zhang,et al.  Central Region Method , 2000 .

[42]  Shuzhong Zhang,et al.  Duality and Self-Duality for Conic Convex Programming , 1996 .

[43]  Stephen J. Wright Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Programming , 1999, SIAM J. Optim..

[44]  Shinji Mizuno,et al.  Infeasible-Interior-Point Algorithms , 1996 .

[45]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[46]  Joaquim Júdice,et al.  An Investigation of Interior-Point Algorithms for the Linear Transportation Problem , 1996, SIAM J. Sci. Comput..

[47]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[48]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[49]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[50]  Henry Wolkowicz,et al.  High accuracy algorithms for the solutions of semidefinite linear programs , 2001 .

[51]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[52]  Shuzhong Zhang,et al.  On weighted centers for semidefinite programming , 2000, Eur. J. Oper. Res..

[53]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[54]  L. Faybusovich Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .

[55]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[56]  M. Overton,et al.  A New Primal-Dual Interior-Point Method for Semidefinite Programming , 1994 .

[57]  D AndersenKnud A modified Schur-complement method for handling dense columns in interior-point methods for linear programming , 1996 .

[58]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[59]  Jos F. Sturm,et al.  Avoiding numerical cancellation in the interior point method for solving semidefinite programs , 2003, Math. Program..

[60]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[61]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[62]  M. Todd A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .

[63]  Irvin Lustig,et al.  Feasibility issues in a primal-dual interior-point method for linear programming , 1990, Math. Program..

[64]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[65]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[66]  Knud D. Andersen A modified Schur-complement method for handling dense columns in interior-point methods for linear programming , 1996, TOMS.

[67]  Yin Zhang,et al.  A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..

[68]  L. Faybusovich Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .

[69]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[70]  Michael A. Saunders,et al.  Commentary - Major Cholesky Would Feel Proud , 1994, INFORMS J. Comput..

[71]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[72]  Madhu V. Nayakkankuppam,et al.  Extending Mehrotra and Gondzio higher order methods to mixed semidefinite-quadratic-linear programming , 1999 .

[73]  Renato D. C. Monteiro,et al.  A note on the existence of the Alizadeh-Haeberly-Overton direction for semidefinite programming , 1997, Math. Program..

[74]  Shuzhong Zhang,et al.  Symmetric primal-dual path-following algorithms for semidefinite programming , 1999 .

[75]  Kim-Chuan Toh,et al.  A Note on the Calculation of Step-Lengths in Interior-Point Methods for Semidefinite Programming , 1999, Comput. Optim. Appl..

[76]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[77]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[78]  B. Borchers A C library for semidefinite programming , 1999 .

[79]  Jean Pierre Haeberly,et al.  Sdppack User's Guide , 1997 .

[80]  Masakazu Kojima,et al.  Numerical Evaluation of SDPA (Semidefinite Programming Algorithm) , 2000 .

[81]  Roy E. Marsten,et al.  Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..

[82]  Stephen P. Boyd,et al.  A primal—dual potential reduction method for problems involving matrix inequalities , 1995, Math. Program..

[83]  Katya Scheinberg,et al.  A product-form Cholesky factorization method for handling dense columns in interior point methods for linear programming , 2004, Math. Program..

[84]  Takashi Tsuchiya,et al.  Polynomial Convergence of a New Family of Primal-Dual Algorithms for Semidefinite Programming , 1999, SIAM J. Optim..

[85]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[86]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.