Applications of p-adics to geophysics: Linear and quasilinear diffusion of water-in-oil and oil-in-water emulsions

In a very general setting, we discuss possibilities of applying p-adics to geophysics using a p-adic diffusion representation of the master equations for the dynamics of a fluid in capillaries in porous media and formulate several mathematical problems motivated by such applications. We stress that p-adic wavelets are a powerful tool for obtaining analytic solutions of diffusion equations. Because p-adic diffusion is a special case of fractional diffusion, which is closely related to the fractal structure of the configuration space, p-adic geophysics can be regarded as a new approach to fractal modeling of geophysical processes.

[1]  Gabor Korvin,et al.  Erratum: Fractal radar scattering from soil [Phys. Rev. E 67, 041403 (2003)] , 2003 .

[2]  Marc-Olivier Coppens,et al.  Anomalous Knudsen diffusion in simple pore models , 2016 .

[3]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[4]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[5]  Igor Volovich,et al.  On the p-adic summability of the anharmonic oscillator , 1988 .

[6]  Sergei Kozyrev,et al.  Wavelet analysis as a p-adic spectral analysis , 2008 .

[7]  S. V. Kozyrev,et al.  Dynamics on rugged landscapes of energy and ultrametric diffusion , 2010 .

[8]  A. Khrennikov,et al.  Non-Haar $p$-adic wavelets and their application to pseudo-differential operators and equations , 2008, 0808.3338.

[9]  Andrei Khrennikov,et al.  p-Adic valued quantization , 2009 .

[10]  S. V. Kozyrev Ultrametric Analysis and Interbasin Kinetics , 2006 .

[11]  W. A. Zúñiga-Galindo Parabolic Equations and Markov Processes Over p-Adic Fields , 2006 .

[12]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[13]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[14]  V. A. Avetisov,et al.  Application of p-adic analysis to models of spontaneous breaking of the replica symmetry , 2008 .

[15]  Brian Berkowitz,et al.  Percolation Theory and Network Modeling Applications in Soil Physics , 1998 .

[16]  I. Procaccia,et al.  Diffusion on fractals. , 1985, Physical review. A, General physics.

[17]  S. V. Kozyrev,et al.  p-Adic Pseudodifferential Operators and p-Adic Wavelets , 2003, math-ph/0303045.

[18]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[19]  W. A. Zuniga-Galindo Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .

[20]  Andrei Khrennikov,et al.  Application of p-Adic Wavelets to Model Reaction–Diffusion Dynamics in Random Porous Media , 2016 .

[21]  E. Perfect,et al.  Anomalous diffusion in two‐dimensional Euclidean and prefractal geometrical models of heterogeneous porous media , 2007 .

[22]  Sergio Albeverio,et al.  The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory , 2011 .

[23]  S L Wearne,et al.  Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Сергей Владимирович Козырев,et al.  Теория всплесков как $p$-адический спектральный анализ@@@Wavelet theory as $p$-adic spectral analysis , 2002 .

[25]  Gabor Korvin,et al.  Fractal radar scattering from soil. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Anatoly N. Kochubei,et al.  Radial Solutions of Non-Archimedean Pseudo-Differential Equations , 2013, 1302.4850.

[27]  Igor Volovich,et al.  p-adic string , 1987 .

[28]  I. V. Volovich,et al.  p-adic space-time and string theory , 1987 .

[29]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[30]  Marc-Olivier Coppens,et al.  Knudsen self- and Fickian diffusion in rough nanoporous media , 2003 .

[31]  K. Oleschko,et al.  Weathering: Toward a Fractal Quantifying , 2004 .

[32]  Andrei Khrennikov,et al.  Theory of P-Adic Distributions: Linear and Nonlinear Models , 2010 .

[33]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[34]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .