Anisotropies and Homogeneities of Superconducting Properties in Iron–Platinum–Arsenide Ca10(Pt3As8)(Fe1.79Pt0.21As2)5

We report a study on the anisotropy of superconducting properties in single crystalline Ca 10 (Pt 4-δ As 8 )(Fe 1.79 Pt 0.21 As 2 ) 5 with T c ∼13.6 K. Under a field of 5 Oe, the sample reaches fully-diamagnetic state at ∼10 K for H ∥ c , and ∼8 K for H ∥ a b , indicating the presence of slight inhomogeneities. The magnetization measurements reveal fish-tail effect in the hysteresis loop for both H ∥ c and H ∥ a b . Averaged critical current densities at low magnetic fields along the c -axis and a b -plane J c H || c and J c H || a b at 5 K are estimated to be 0.9×10 5 and 0.7×10 5 A/cm 2 , respectively. Resistive transitions under magnetic field show broadening, which is consistent with a relatively large anisotropy of upper critical field. Magneto-optical images reveal homogenous current flow within the a b -plane.

[1]  R. Cava,et al.  Large magnetic penetration depth and thermal fluctuations in a superconducting Ca 10 (Pt 3 As 8 )[(Fe 1 − x Pt x ) 2 As 2 ] 5 ( x = 0.097 ) single crystal , 2012, 1205.5011.

[2]  D. Larbalestier,et al.  High intergrain critical current density in fine-grain (Ba0.6K0.4)Fe2As2 wires and bulks. , 2012, Nature materials.

[3]  D. Johrendt,et al.  The role of different negatively charged layers in Ca10(Fe1-xPtxAs)10(Pt3+yAs8) and superconductivity at 30 K in electron-doped (Ca0.8La0.2)10(FeAs)10(Pt3As8) , 2012, 1203.6767.

[4]  X. H. Chen,et al.  Transport properties and electronic phase diagram of single-crystalline Ca 10 (Pt 3 As 8 )((Fe 1-x Pt x ) 2 As 2 ) 5 , 2012, 1203.1486.

[5]  Tatsuo C. Kobayashi,et al.  Iron?platinum?arsenide superconductors Ca10(PtnAs8)(Fe2-xPtxAs2)5 , 2012, 1203.0821.

[6]  Y. Nakajima,et al.  Magnetic and transport properties of iron-platinum arsenide Ca 10 (Pt 4-δ As 8 )(Fe 2-x Pt x As 2 ) 5 single crystal , 2012, 1203.0099.

[7]  D. Golberg,et al.  Growth of single-crystal Ca10(Pt4As8)(Fe(1.8)Pt(0.2)As2)5 nanowhiskers with superconductivity up to 33 K. , 2012, Journal of the American Chemical Society.

[8]  R. Cava,et al.  Anisotropic $H_{c2}$ determined up to 92 T and the signature of multi-band superconductivity in Ca$_{10}$(Pt$_{4}$As$_{8}$)((Fe$_{1-x}$Pt$_{x}$)$_{2}$As$_{2}$)$_{5}$ superconductor , 2012, 1202.5011.

[9]  K. Kudo,et al.  Breakdown of Chemical Scaling for Pt-Doped CaFe2As2 , 2012, 1203.0822.

[10]  R. Cava,et al.  Fermi-surface topology and low-lying electronic structure of the iron-based superconductor Ca10(Pt3As8)(Fe2As2)5 , 2011, 1110.4687.

[11]  R. Cava,et al.  Doping - dependent superconducting gap anisotropy in the two-dimensional 10-3-8 pnictide Ca$_{10}$(Pt$_3$As$_8$)[(Fe$_{1-x}$Pt$_{x}$)$_2$As$_2$]$_5$ , 2011, 1111.1003.

[12]  A. L. Ivanovskii,et al.  Electronic structure and chemical bonding in novel tetragonal phase Ca10(Pt4As8)(Fe2As2)5 as a parent material for the new family of high-TC iron-pnictide superconductors , 2011, 1108.0495.

[13]  E. Nishibori,et al.  Superconductivity at 38 K in Iron-Based Compound with Platinum–Arsenide Layers Ca10(Pt4As8)(Fe2-xPtxAs2)5 , 2011, 1108.0029.

[14]  D. Johrendt,et al.  Superconductivity up to 35 K in the iron platinum arsenides (CaFe(1-x)Pt(x)As)10Pt(4-y)As8 with layered structures. , 2011, Angewandte Chemie.

[15]  A. Gurevich To use or not to use cool superconductors? , 2011, Nature materials.

[16]  G. Prando,et al.  Vortex dynamics and irreversibility line in optimally doped SmFeAsO 0.8 F 0.2 from ac susceptibility and magnetization measurements , 2011, 1102.1404.

[17]  J. Prakash,et al.  Effects of simultaneous carrier doping in the charge reservoir and conducting layers of superconducting CeO0.9F0.1Fe1−xCoxAs , 2010 .

[18]  Superconductivity at 28.3 and 17.1 K in (Ca4Al2O6-y)(Fe2Pn2) (Pn = As and P) , 2010, 1008.2586.

[19]  Y. Ikuhara,et al.  A new homologous series of iron pnictide oxide superconductors (Fe2As2)(Can + 2(Al, Ti)nOy) (n = 2, 3, 4) , 2010, 1008.2582.

[20]  Shinya Sato,et al.  Homologous series of iron pnictide oxide superconductors (Fe2As2)[Can+1(Sc,Ti)nOy] (n=3,4,5) with extremely thick blocking layers , 2010, 1006.2355.

[21]  K. Kishio,et al.  New Iron Arsenide Oxides (Fe2As2)(Sr4(Sc,Ti)3O8), (Fe2As2)(Ba4Sc3O7.5), and (Fe2As2)(Ba3Sc2O5) , 2010, 1006.2353.

[22]  D. Larbalestier,et al.  New Fe-based superconductors: properties relevant for applications , 2009, 0910.1297.

[23]  Shinya Sato,et al.  Superconductivity in a new iron pnictide oxide (Fe2As2)(Sr4(Mg, Ti)2O6) , 2009, 0909.2945.

[24]  P. Canfield,et al.  Strongly dissimilar vortex-liquid regimes in single-crystalline NdFeAs(O,F) and (Ba,K)Fe2As2: A comparative study , 2009 .

[25]  Y. Tsuchiya,et al.  Superconductivity at T_{c}∼14 K in single-crystalline FeTe_{0.61}Se_{0.39} , 2009, 0906.1951.

[26]  Peng Cheng,et al.  Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K , 2009, 0904.1732.

[27]  K. Kishio,et al.  New Series of Nickel-Based Pnictide Oxide Superconductors (Ni2Pn2)(Sr4Sc2O6) (Pn = P, As) , 2009, 0904.0825.

[28]  K. Kishio,et al.  New iron-based arsenide oxides (Fe2As2)(Sr4M2O6)(M = Sc, Cr) , 2009, 0903.5124.

[29]  Z. Fisk,et al.  Superconductivity without Fe or Ni in the phosphides BaIr 2 P 2 and BaRh 2 P 2 , 2009, 0902.4476.

[30]  Yang Wang,et al.  Effects of cobalt doping and phase diagrams of LFe1-xCox AsO (L=La and Sm) , 2009 .

[31]  P. Canfield,et al.  Upper and lower critical magnetic fields of superconducting NdFeAsO1−xFx single crystals studied by Hall-probe magnetization and specific heat , 2008, 0812.3953.

[32]  Y. Nakajima,et al.  Possible Superconductivity above 25 K in Single-Crystalline Co-Doped BaFe2As2 , 2008, 0811.2621.

[33]  Fu-Chun Zhang,et al.  Narrow superconducting window in LaFe 1 − x Ni x AsO , 2008, 0807.4328.

[34]  X. H. Chen,et al.  Anisotropy in the electrical resistivity and susceptibility of superconducting BaFe2As2 single crystals. , 2008, Physical review letters.

[35]  Xiyu Zhu,et al.  (Sr_3Sc_2O_5)Fe_2As_2 as a possible parent compound for FeAs-based superconductors , 2008, 0811.2205.

[36]  H. Hosono,et al.  Superconductivity induced by co-doping in quaternary fluoroarsenide CaFeAsF. , 2008, Journal of the American Chemical Society.

[37]  Jiaqiang Yan,et al.  Vortex phase diagram of Ba(Fe 0.93 Co 0.07 ) 2 As 2 single crystals , 2008, 0810.1338.

[38]  Jun Fujikami,et al.  Progress in performance of DI-BSCCO family , 2008 .

[39]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[40]  J. Tapp,et al.  LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K , 2008, 0807.2274.

[41]  Fengying Li,et al.  The superconductivity at 18 K in LiFeAs system , 2008, 0806.4688.

[42]  E. A. Payzant,et al.  Phase Transitions in LaFeAsO: Structural, Magnetic, Elastic, and Transport Properties, Heat Capacity and Mössbauer Spectra , 2008, 0806.3878.

[43]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[44]  Z. Ren,et al.  Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping , 2008, 0804.2582.

[45]  Huiqian Luo,et al.  Superconductivity at 36 K in gadolinium-arsenide oxides GdO1−xFxFeAs , 2008, 0804.0835.

[46]  Gang Li,et al.  Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs. , 2008, Physical review letters.

[47]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[48]  Bo Chen,et al.  Two-dimensional vortices in superconductors , 2007, Nature Physics.

[49]  M. Koblischka,et al.  Magneto-optical investigations of superconductors , 1995 .

[50]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[51]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[52]  C. P. Bean,et al.  Magnetization of High-Field Superconductors , 1964 .