Traveling wave solutions of the Schrödinger map equation

We first construct traveling wave solutions for the Schrödinger map in ℝ2 $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{{\partial m}\over{\partial t}}= m \times (\Delta m - m_3{\vec{e}}_3) \quad {\rm in} \;\R^2 \times \R $ of the form m(x1, x2 − ϵ t), where m has exactly two vortices at approximately $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}(\pm {{1}\over{2 \epsilon}}, 0) \in \R^2$ of degree ±1. We use a perturbative approach that gives a complete characterization of the asymptotic behavior of the solutions. With a few modifications, a similar construction yields traveling wave solutions of Schrödinger map equations in higher dimensions. © 2010 Wiley Periodicals, Inc.

[1]  C. Zeng,et al.  Self-similar solutions of Schrödinger flows , 2009 .

[2]  Jean-Claude Saut,et al.  Travelling Waves for the Gross-Pitaevskii Equation II , 2007, 0711.2408.

[3]  F. Lin,et al.  On the number of interior peak solutions for a singularly perturbed Neumann problem , 2007 .

[4]  M. Pino,et al.  Variational reduction for Ginzburg–Landau vortices , 2006 .

[5]  K. Kang,et al.  Asymptotic stability of harmonic maps under the Schr , 2006, math/0609591.

[6]  Jalal Shatah,et al.  Schrödinger Maps and Anti-Ferromagnetic Chains , 2006 .

[7]  K. Kang,et al.  Schrödinger flow near harmonic maps , 2005, math/0504497.

[8]  Giandomenico Orlandi,et al.  Vortex rings for the Gross-Pitaevskii equation , 2004 .

[9]  Ling Fang-hua,et al.  Soliton dynamics in planar ferromagnets and anti-ferromagnets , 2003 .

[10]  W. Ding,et al.  On the Schrödinger flows , 2003 .

[11]  P. Felmer,et al.  Two-bubble solutions in the super-critical Bahri-Coron's problem , 2003 .

[12]  Jalal Shatah,et al.  The stability of localized solutions of Landau‐Lifshitz equations , 2002 .

[13]  Ding Weiyue Wang Youde,et al.  Local Schrödinger flow into Kähler manifolds , 2001 .

[14]  Fanghua Lin,et al.  Static Theory for Planar Ferromagnets and Antiferromagnets , 2001 .

[15]  Changfeng Gui,et al.  Multiple interior peak solutions for some singularly perturbed neumann problems , 1999 .

[16]  J. Xin,et al.  On the Dynamical Law of the Ginzburg-Landau Vortices on the Plane , 1999 .

[17]  N. Papanicolaou,et al.  Semitopological solitons in planar ferromagnets , 1999 .

[18]  W. Ding,et al.  Schrödinger flow of maps into symplectic manifolds , 1998 .

[19]  S. Komineas,et al.  Vortex dynamics in two-dimensional antiferromagnets , 1996, cond-mat/9612043.

[20]  S. Komineas,et al.  Topology and dynamics in ferromagnetic media , 1995, cond-mat/9511126.

[21]  Boling Guo,et al.  The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps , 1993 .

[22]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[23]  John C. Neu,et al.  Vortices in complex scalar fields , 1990 .

[24]  Claude Bardos,et al.  On the continuous limit for a system of classical spins , 1986 .

[25]  Augusto Visintin,et al.  On Landau-Lifshitz’ equations for ferromagnetism , 1985 .

[26]  Paul H. Roberts,et al.  Motions in a Bose condensate: IV. Axisymmetric solitary waves , 1982 .

[27]  Changyou Wang,et al.  On the Landau-Lifshitz equation in dimensions at most four , 2006 .

[28]  M. Pino,et al.  Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality , 2004 .