Fuzzy constraints in job-shop scheduling

This paper proposes an extension of the constraint-based approach to job-shop scheduling, that accounts for the flexibility of temporal constraints and the uncertainty of operation durations. The set of solutions to a problem is viewed as a fuzzy set whose membership function reflects preference. This membership function is obtained by an egalitarist aggregation of local constraint-satisfaction levels. Uncertainty is qualitatively described in terms of possibility distributions. The paper formulates a simple mathematical model of job-shop scheduling under preference and uncertainty, relating it to the formal framework of constraint-satisfaction problems in artificial intelligence. A combinatorial search method that solves the problem is outlined, including fuzzy extensions of well-known look-ahead schemes.

[1]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning - II , 1975, Inf. Sci..

[2]  Helene Fargier Problèmes de satisfaction de contraintes flexibles. Application à l'ordonnancement de production , 1994 .

[3]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[4]  Patrick Esquirol,et al.  Decision-aid in job shop scheduling: A knowledge based approach , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[6]  Hiroaki Ishii,et al.  Two scheduling problems with fuzzy due-dates , 1992 .

[7]  Mark S. Fox,et al.  Constraint-Directed Search: A Case Study of Job-Shop Scheduling , 1987 .

[8]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[9]  F A Lootsma,et al.  THEORY AND METHODOLOGY STOCHASTIC AND FUZZY PERT , 1989 .

[10]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[11]  Bradley P. Allen,et al.  Job-Shop Scheduling: An Investigation in Constraint-Directed Reasoning , 1982, AAAI.

[12]  Igor Gazdik Fuzzy-Network Planning - FNET , 1983, IEEE Transactions on Reliability.

[13]  Didier Dubois,et al.  A decision engine based on rational aggregation of heuristic knowledge , 1994, Decis. Support Syst..

[14]  Didier Dubois,et al.  Processing fuzzy temporal knowledge , 1989, IEEE Trans. Syst. Man Cybern..

[15]  Bernard Grabot,et al.  Dispatching rules in scheduling Dispatching rules in scheduling: a fuzzy approach , 1994 .

[16]  Norman Sadeh,et al.  Look-ahead techniques for micro-opportunistic job shop scheduling , 1992 .

[17]  Jean-Claude Latombe,et al.  Making Compromises Among Antagonist Constraints in a Planner , 1985, Artif. Intell..

[18]  E. Bensana,et al.  OPAL: A Knowledge-Based System for Industrial Job-Shop Scheduling , 1988 .

[19]  J. Erschler,et al.  Technical Note - Finding Some Essential Characteristics of the Feasible Solutions for a Scheduling Problem , 1976, Oper. Res..

[20]  H. Ishibuchi,et al.  Local search algorithms for flow shop scheduling with fuzzy due-dates☆ , 1994 .

[21]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[22]  D. Dubois,et al.  An application of fuzzy arithmetic to the optimization of industrial machining processes , 1987 .

[23]  L. N. Van Wassenhove,et al.  Analysis of Scheduling Rules for an FMS , 1990 .

[24]  H. Prade Using fuzzy set theory in a scheduling problem: A case study , 1979 .

[25]  Richard Bellman,et al.  Mathematical Aspects Of Scheduling And Applications , 1982 .

[26]  Claude Lepape SOJA: a daily workshop scheduling system, SOJA's system and inference engine , 1986 .

[27]  Jan Karel Lenstra,et al.  Job Shop Scheduling by Simulated Annealing , 1992, Oper. Res..

[28]  Marialuisa N. McAllister Possibility Theory: An Approach to Computerized Processing of Uncertainty (Didier Dubois and Henri Prade with the collaboration o f Henri Farreny, Roger Martin-Clouaire, and Claudette Testemale; E. F. Handing, trans.) , 1992, SIAM Rev..

[29]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[30]  Richard J. Wallace,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[31]  S. Chanas,et al.  THE USE OF FUZZY VARIABLES IN PERT , 1981 .

[32]  J. Erschler,et al.  Raisonnement temporel sous contraintes de ressource et problèmes d'ordonnancement , 1991 .

[33]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[34]  Eugene C. Freuder,et al.  Improved relaxation and search methods for approximate constraint satisfaction with a maximin criter , 1990 .

[35]  F. Lootsma Stochastic and Fuzzy Pert , 1989 .

[36]  Thomas Schiex,et al.  Possibilistic Constraint Satisfaction Problems or "How to Handle Soft Constraints?" , 1992, UAI.

[37]  Stephen F. Smith,et al.  ISIS—a knowledge‐based system for factory scheduling , 1984 .

[38]  Fred Glover,et al.  Tabu search methods for a single machine scheduling problem , 1991, J. Intell. Manuf..

[39]  K. Kandt Knowledge-based scheduling , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[40]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[41]  E. Antonsson,et al.  Engineering design calculations with fuzzy parameters , 1992 .

[42]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[43]  H. Zimmermann DESCRIPTION AND OPTIMIZATION OF FUZZY SYSTEMS , 1975 .

[44]  Don T. Phillips,et al.  A state-of-the-art survey of dispatching rules for manufacturing job shop operations , 1982 .

[45]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[46]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[47]  S. H. Nasution Fuzzy Critical Path Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..