Enhancing Solar Cell Efficiencies through 1-D Nanostructures

The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

[1]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[2]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[3]  Yuehe Lin,et al.  Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes. , 2005, Journal of nanoscience and nanotechnology.

[4]  R. Ruoff,et al.  Electrostatic-Force-Directed Assembly of Ag Nanocrystals onto Vertically Aligned Carbon Nanotubes† , 2007 .

[5]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[6]  Nathan S. Lewis,et al.  Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 , 2005 .

[7]  M. Wahlen,et al.  Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 , 1995, Nature.

[8]  Todd D. Krauss,et al.  Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes , 2002 .

[9]  M. Grätzel Corrigendum to “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” [J. Photochem. Photobiol. A: Chem. 164 (2004) 3–14] , 2004 .

[10]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[11]  V. Klimov Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication , 2006 .

[12]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[13]  C. B. Carter,et al.  Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. , 2007, Nano letters.

[14]  Ladislav Kavan,et al.  Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. , 2005, Nano letters.

[15]  Stanislaus S. Wong,et al.  In situ quantum dot growth on multiwalled carbon nanotubes. , 2003, Journal of the American Chemical Society.

[16]  J. Gilman,et al.  Nanotechnology , 2001 .

[17]  L. Gao,et al.  Synthesis and characterization of CdS/multiwalled carbon nanotube heterojunctions , 2004 .

[18]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[19]  J. Macák,et al.  Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization – a comparison , 2007 .

[20]  Prashant V. Kamat,et al.  Photoelectrochemical behavior of thin CdSe and coupled TiO2/CdSe semiconductor films , 1993 .

[21]  Nathan S Lewis,et al.  High aspect ratio silicon wire array photoelectrochemical cells. , 2007, Journal of the American Chemical Society.

[22]  Craig A Grimes,et al.  Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. , 2005, The journal of physical chemistry. B.

[23]  Cengiz S. Ozkan,et al.  Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications , 2003 .

[24]  Margit Zacharias,et al.  Semiconductor nanowires: from self-organization to patterned growth. , 2006, Small.

[25]  D. Riley,et al.  Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used To Photosensitize Nanocrystalline TiO2 , 2003 .

[26]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[27]  H. Gerischer,et al.  ELECTROCHEMICAL TECHNIQUES FOR THE STUDY OF PHOTOSENSITIZATION * , 1972 .

[28]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[29]  Stanislaus S. Wong,et al.  Synthesis and Characterization of Carbon Nanotube−Nanocrystal Heterostructures , 2002 .

[30]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[31]  John F. Bookout Two centuries of fossil fuel energy , 1989 .

[32]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[33]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[34]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[35]  A. Karimi,et al.  Master‟s thesis , 2011 .

[36]  Arthur J. Nozik,et al.  Photosensitization of nanoporous TiO2 electrodes with InP quantum dots , 1998 .

[37]  Mildred Dresselhaus,et al.  Basic Research Needs for the Hydrogen Economy , 2004 .

[38]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[39]  T. Kitamura,et al.  Influence of measurement conditions on electron diffusion in nanoporous TiO2 films: Effects of bias light and dye adsorption , 2003 .

[40]  Peng Wang,et al.  Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. , 2005, Journal of the American Chemical Society.

[41]  Zhipeng Huang,et al.  Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density , 2007 .

[42]  M. Mazzer,et al.  Resolving the energy crisis: nuclear or photovoltaics? , 2006 .

[43]  R. Könenkamp Carrier transport in nanoporous TiO 2 films , 2000 .

[44]  Prashant V. Kamat,et al.  Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization , 1999 .

[45]  Richard E. Smalley,et al.  Future Global Energy Prosperity: The Terawatt Challenge , 2005 .

[46]  R. Smalley,et al.  Ultrafast carrier dynamics in single-walled carbon nanotubes probed by feintosecond spectroscopy , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[47]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[48]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[49]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[50]  S. Hotchandani,et al.  Photosensitization of Nanocrystalline ZnO Films by Bis(2,2‘-bipyridine)(2,2‘-bipyridine-4,4‘-dicarboxylic acid)ruthenium(II) , 1997 .

[51]  R. Memming,et al.  PHOTOCHEMICAL AND ELECTROCHEMICAL PROCESSES OF EXCITED DYES AT SEMICONDUCTOR AND METAL ELECTRODES * , 1972 .

[52]  Jean-François Guillemoles,et al.  Nature of Photovoltaic Action in Dye-Sensitized Solar Cells , 2000 .

[53]  Thomas W. Hamann,et al.  Aerogel Templated ZnO Dye‐Sensitized Solar Cells , 2008 .

[54]  Horst Weller,et al.  Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS , 1990 .

[55]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[56]  Arthur J. Frank,et al.  Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies , 2001 .

[57]  Y. Xing Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes , 2004 .

[58]  J. Bonard,et al.  Conducting polymeric nanotubules as high performance methanol oxidation catalyst support. , 2003, Chemical communications.

[59]  P. Kamat,et al.  Single‐Walled Carbon Nanotube–CdS Nanocomposites as Light‐Harvesting Assemblies: Photoinduced Charge‐Transfer Interactions , 2005 .

[60]  M. Lübke,et al.  A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit , 1986 .

[61]  Zhi‐Xin Guo,et al.  In situ synthesis of CdS nanoparticles on multi-walled carbon nanotubes , 2004 .

[62]  D. Vasileska,et al.  Electron Mobility in Silicon Nanowires , 2008, IEEE Transactions on Nanotechnology.

[63]  Yi Jia,et al.  Double-walled carbon nanotube solar cells. , 2007, Nano letters.

[64]  David J Smith,et al.  Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. , 2006, Small.

[65]  Sumio Iijima,et al.  Elastic Response of Carbon Nanotube Bundles to Visible Light , 1999 .

[66]  Aaron Stein,et al.  Hot Carrier Electroluminescence from a Single Carbon Nanotube , 2004 .

[67]  E. Aydil,et al.  Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells , 2006 .

[68]  Junhong Chen,et al.  A simple and versatile mini-arc plasma source for nanocrystal synthesis , 2007 .

[69]  Stanislaus S. Wong,et al.  Formation of CdSe nanocrystals onto oxidized, ozonized single-walled carbon nanotube surfaces. , 2004, Chemical communications.

[70]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[71]  C. Sönnichsen,et al.  Growth of Gold Tips onto Hyperbranched CdTe Nanostructures , 2008 .

[72]  Nathan S. Lewis,et al.  Solar energy conversion. , 2007 .

[73]  P. Kamat Photoelectrochemistry in particulate systems. 9. Photosensitized reduction in a colloidal titania system using anthracene-9-carboxylate as the sensitizer , 1989 .

[74]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[75]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[76]  Prashant V. Kamat,et al.  Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells , 2008 .

[77]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[78]  Torsten Oekermann,et al.  Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization , 2004 .

[79]  Qing Chen,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[80]  D. Vanmaekelbergh,et al.  Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. , 2002, Physical review letters.

[81]  A. J. Frank,et al.  Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. , 2007, Nano letters.

[82]  R. Maboudian,et al.  Synthesis of High Density, Size-Controlled Si Nanowire Arrays via Porous Anodic Alumina Mask , 2006 .

[83]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[84]  Jan M. Macak,et al.  Dye-sensitized anodic TiO2 nanotubes , 2005 .

[85]  W. Sigmund,et al.  Functionalized multiwall carbon nanotube/gold nanoparticle composites. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[86]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[87]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[88]  J. Macák,et al.  Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes , 2005 .

[89]  Prashant V. Kamat,et al.  C60 Cluster as an Electron Shuttle in a Ru(II)-Polypyridyl Sensitizer-Based Photochemical Solar Cell , 2004 .

[90]  Prashant V. Kamat,et al.  Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) Complex , 1994 .

[91]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[92]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[93]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[94]  U. Bach,et al.  The function of a TiO2 compact layer in dye-sensitized solar cells incorporating "planar" organic dyes. , 2008, Nano letters.

[95]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[96]  D. Wang,et al.  Germanium nanowires: from synthesis, surface chemistry, and assembly to devices , 2006, 2006 64th Device Research Conference.

[97]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[98]  Akihiko Kudo,et al.  Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties , 1993 .

[99]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[100]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[101]  Alex Zettl,et al.  Coating Single-Walled Carbon Nanotubes with Tin Oxide , 2003 .

[102]  Prashant V Kamat,et al.  Quantum dot solar cells. Electrophoretic deposition of CdSe-C60 composite films and capture of photogenerated electrons with nC60 cluster shell. , 2008, Journal of the American Chemical Society.

[103]  G. Lu,et al.  A Generic Approach to Coat Carbon Nanotubes With Nanoparticles for Potential Energy Applications , 2008 .

[104]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[105]  Prashant V. Kamat,et al.  Harvesting photons with carbon nanotubes , 2006 .

[106]  C L Kane,et al.  Ratio problem in single carbon nanotube fluorescence spectroscopy. , 2003, Physical review letters.

[107]  L. K. Patterson,et al.  Photochemistry of Ru(bpy)2(dcbpy)2+ on Al2O3 and TiO2 Surfaces. An Insight into the Mechanism of Photosensitization , 1995 .

[108]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[109]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[110]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[111]  T. Pedersen Variational approach to excitons in carbon nanotubes , 2003 .

[112]  S Funk,et al.  Unexpected adsorption of oxygen on TiO2 nanotube arrays: influence of crystal structure. , 2007, Nano letters.

[113]  Henry J. Snaith,et al.  Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[114]  I. B. Martini,et al.  ULTRAFAST STUDY OF INTERFACIAL ELECTRON TRANSFER BETWEEN 9-ANTHRACENE-CARBOXYLATE AND TIO2 SEMICONDUCTOR PARTICLES , 1997 .

[115]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[116]  P. Pötschke,et al.  Carbon nanofibers for composite applications , 2004 .

[117]  W. Su,et al.  Efficient photoinduced charge transfer in TiO2 nanorod/conjugated polymer hybrid materials , 2006 .

[118]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[119]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[120]  B. Hsiao,et al.  Patterning polyethylene oligomers on carbon nanotubes using physical vapor deposition. , 2006, Nano letters.

[121]  Marc A. Anderson,et al.  Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation , 1990 .

[122]  I. Willner,et al.  Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. , 2004, Angewandte Chemie.

[123]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[124]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[125]  Paul B. Weisz,et al.  Basic Choices and Constraints on Long-Term Energy Supplies , 2004 .

[126]  A. J. Frank,et al.  Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells , 2005 .

[127]  Adrian C. Fisher,et al.  Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2000 .

[128]  Mihrimah Ozkan,et al.  Fluorescence Microscopy Visualization of Single-Walled Carbon Nanotubes Using Semiconductor Nanocrystals , 2004 .

[129]  R. W. Fessenden,et al.  Rate Constants for Charge Injection from Excited Sensitizer into SnO2, ZnO, and TiO2 Semiconductor Nanocrystallites , 1995 .

[130]  Shuzi Hayase,et al.  Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells , 2005 .

[131]  Prashant V. Kamat,et al.  Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of the SnO 2 /TiO 2 Coupled System with a Ruthenium Polypyridyl Complex , 1998 .

[132]  Junhong Chen,et al.  Controlled decoration of carbon nanotubes with nanoparticles , 2006 .

[133]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[134]  P. Poulin,et al.  Carbon nanotube fiber microelectrodes. , 2003, Journal of the American Chemical Society.