Formin Activity and mDia1 Contribute to Maintain Axon Initial Segment Composition and Structure

[1]  R. Adachi,et al.  Structural and Functional Refinement of the Axon Initial Segment in Avian Cochlear Nucleus during Development , 2020, The Journal of Neuroscience.

[2]  A. Bershadsky,et al.  The formin inhibitor SMIFH2 inhibits members of the myosin superfamily , 2020, bioRxiv.

[3]  Shiaoching Gong,et al.  Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis , 2019, Neuron.

[4]  A. Bershadsky,et al.  Myosin IIA and formin dependent mechanosensitivity of filopodia adhesion , 2019, Nature Communications.

[5]  C. Hoogenraad,et al.  TRIM46 Organizes Microtubule Fasciculation in the Axon Initial Segment , 2019, The Journal of Neuroscience.

[6]  C. Hoogenraad,et al.  MAP7D2 Localizes to the Proximal Axon and Locally Promotes Kinesin-1-Mediated Cargo Transport into the Axon , 2019, Cell reports.

[7]  M. Kengaku,et al.  Multiple roles of the actin and microtubule-regulating formins in the developing brain , 2019, Neuroscience Research.

[8]  N. Courtemanche Mechanisms of formin-mediated actin assembly and dynamics , 2018, Biophysical Reviews.

[9]  G. Koenderink,et al.  Actin–microtubule crosstalk in cell biology , 2018, Nature Reviews Molecular Cell Biology.

[10]  Christophe Leterrier,et al.  The functional architecture of axonal actin , 2018, Molecular and Cellular Neuroscience.

[11]  M. A. Alonso,et al.  Coordination of microtubule acetylation and the actin cytoskeleton by formins , 2018, Cellular and Molecular Life Sciences.

[12]  D. Lim,et al.  BIG2-ARF1-RhoA-mDia1 Signaling Regulates Dendritic Golgi Polarization in Hippocampal Neurons , 2018, Molecular Neurobiology.

[13]  J. Salzer,et al.  Localized Myosin II Activity Regulates Assembly and Plasticity of the Axon Initial Segment , 2018, Neuron.

[14]  C. Hoogenraad,et al.  Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport , 2017, Neuron.

[15]  Don B. Arnold,et al.  Structure and Function of an Actin-Based Filter in the Proximal Axon. , 2017, Cell reports.

[16]  G. Gundersen,et al.  Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Aβ1–42 synaptotoxicity , 2017, The Journal of cell biology.

[17]  C. Schultz,et al.  Structural Plasticity of Synaptopodin in the Axon Initial Segment during Visual Cortex Development , 2017, Cerebral cortex.

[18]  C. Hoogenraad,et al.  Myosin-V Induces Cargo Immobilization and Clustering at the Axon Initial Segment , 2017, Front. Cell. Neurosci..

[19]  Guillermo A. Gomez,et al.  Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility. , 2017, Cell reports.

[20]  J. Garrido,et al.  Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment , 2017, Frontiers in cellular neuroscience.

[21]  C. Hoogenraad,et al.  Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment , 2016, The Journal of Neuroscience.

[22]  A. Prokop,et al.  Periodic actin structures in neuronal axons are required to maintain microtubules , 2016, bioRxiv.

[23]  A. T. Gulledge,et al.  Neuron Morphology Influences Axon Initial Segment Plasticity123 , 2016, eNeuro.

[24]  D. Debanne,et al.  Homeostatic regulation of h‐conductance controls intrinsic excitability and stabilizes the threshold for synaptic modification in CA1 neurons , 2015, The Journal of physiology.

[25]  Christophe Leterrier,et al.  A dynamic formin-dependent deep F-actin network in axons , 2015, The Journal of cell biology.

[26]  D. Debanne,et al.  ATP-P2X7 Receptor Modulates Axon Initial Segment Composition and Function in Physiological Conditions and Brain Injury. , 2015, Cerebral cortex.

[27]  M. Vassalli,et al.  HDAC6 and RhoA are novel players in Abeta-driven disruption of neuronal polarity , 2015, Nature Communications.

[28]  K. Huth Transport , 2015, Canadian Medical Association Journal.

[29]  M. Geyer,et al.  Formins as effector proteins of Rho GTPases , 2014, Small GTPases.

[30]  Steven L Jones,et al.  Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments , 2014, The Journal of cell biology.

[31]  S. N. Rasband,et al.  Blast wave exposure impairs memory and decreases axon initial segment length. , 2013, Journal of neurotrauma.

[32]  J. Copeland,et al.  The Ability to Induce Microtubule Acetylation Is a General Feature of Formin Proteins , 2012, PloS one.

[33]  G. Gundersen,et al.  Actin-capping protein promotes microtubule stability by antagonizing the actin activity of mDia1 , 2012, Molecular biology of the cell.

[34]  J. DeFelipe,et al.  Colocalization of α-actinin and synaptopodin in the pyramidal cell axon initial segment. , 2012, Cerebral cortex.

[35]  Laurence O Trussell,et al.  The physiology of the axon initial segment. , 2012, Annual review of neuroscience.

[36]  Yousheng Shu,et al.  Short- and Long-Term Plasticity at the Axon Initial Segment , 2011, The Journal of Neuroscience.

[37]  S. Narumiya,et al.  Deficiency of mDia, an Actin Nucleator, Disrupts Integrity of Neuroepithelium and Causes Periventricular Dysplasia , 2011, PloS one.

[38]  H. Vacher,et al.  End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment , 2011, Proceedings of the National Academy of Sciences.

[39]  U. Suter,et al.  The Small GTPase RhoA Is Required to Maintain Spinal Cord Neuroepithelium Organization and the Neural Stem Cell Pool , 2011, The Journal of Neuroscience.

[40]  A. Muñoz,et al.  Casein kinase 2 and microtubules control axon initial segment formation , 2011, Molecular and Cellular Neuroscience.

[41]  M. Schleicher,et al.  Phospholipids regulate localization and activity of mDia1 formin. , 2010, European journal of cell biology.

[42]  J. Garrido,et al.  Impaired Function of HDAC6 Slows Down Axonal Growth and Interferes with Axon Initial Segment Development , 2010, PloS one.

[43]  Matthew N. Rasband,et al.  The axon initial segment and the maintenance of neuronal polarity , 2010, Nature Reviews Neuroscience.

[44]  M. Grubb,et al.  Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability , 2010, Nature.

[45]  G. Gundersen,et al.  Formins and microtubules. , 2010, Biochimica et biophysica acta.

[46]  M. Geyer,et al.  Fifteen formins for an actin filament: a molecular view on the regulation of human formins. , 2010, Biochimica et biophysica acta.

[47]  M. Gardel,et al.  Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. , 2009, Chemistry & biology.

[48]  Fudong Liu,et al.  Disruption of the Axon Initial Segment Cytoskeleton Is a New Mechanism for Neuronal Injury , 2009, The Journal of Neuroscience.

[49]  Jürgen-Markus Sobotzik,et al.  AnkyrinG is required to maintain axo-dendritic polarity in vivo , 2009, Proceedings of the National Academy of Sciences.

[50]  A. Bershadsky,et al.  Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6 , 2009, Journal of Cell Science.

[51]  M. Setou,et al.  Tubulin tyrosination navigates the kinesin-1 motor domain to axons , 2009, Nature Neuroscience.

[52]  M. Poo,et al.  A Selective Filter for Cytoplasmic Transport at the Axon Initial Segment , 2009, Cell.

[53]  M. Rasband,et al.  AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity , 2008, The Journal of cell biology.

[54]  Pierre Giraud,et al.  Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices , 2008, Nature Protocols.

[55]  J. Moseley,et al.  The formin mDia2 stabilizes microtubules independently of its actin nucleation activity , 2008, The Journal of cell biology.

[56]  I. Arnal,et al.  EB1 regulates microtubule dynamics and tubulin sheet closure in vitro , 2008, Nature Cell Biology.

[57]  B. Kampa,et al.  Action potential generation requires a high sodium channel density in the axon initial segment , 2008, Nature Neuroscience.

[58]  A. Bershadsky,et al.  Mammalian diaphanous-related formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions , 2007, Journal of Cell Science.

[59]  Thomas Deller,et al.  Loss of the cisternal organelle in the axon initial segment of cortical neurons in synaptopodin‐deficient mice , 2007, The Journal of comparative neurology.

[60]  M. Eck,et al.  Mechanism and function of formins in the control of actin assembly. , 2007, Annual review of biochemistry.

[61]  Fabrice P Cordelières,et al.  Histone Deacetylase 6 Inhibition Compensates for the Transport Deficit in Huntington's Disease by Increasing Tubulin Acetylation , 2007, The Journal of Neuroscience.

[62]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[63]  Tom Shemesh,et al.  Assembly and mechanosensory function of focal adhesions: experiments and models. , 2006, European journal of cell biology.

[64]  F. Saltel,et al.  A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts , 2005, Journal of Cell Science.

[65]  H. Higgs,et al.  Phylogenetic analysis of the formin homology 2 domain. , 2004, Molecular biology of the cell.

[66]  M. Chen,et al.  EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration , 2004, Nature Cell Biology.

[67]  N. Hirokawa,et al.  Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head , 2003, The Journal of cell biology.

[68]  A. Alberts,et al.  The formins: active scaffolds that remodel the cytoskeleton. , 2003, Trends in cell biology.

[69]  R. Iino,et al.  Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization , 2003, Nature Cell Biology.

[70]  Juan José Garrido,et al.  A Targeting Motif Involved in Sodium Channel Clustering at the Axonal Initial Segment , 2003, Science.

[71]  K. Nozaki,et al.  Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurons , 2003, The Journal of cell biology.

[72]  M. Komada,et al.  βIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier , 2002, The Journal of cell biology.

[73]  V. Bennett,et al.  Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments , 2001, The Journal of cell biology.

[74]  M. Madeja,et al.  Do neurons have a reserve of sodium channels for the generation of action potentials? A study on acutely isolated CA1 neurons from the guinea‐pig hippocampus , 2000, The European journal of neuroscience.

[75]  I. Mellman,et al.  A diffusion barrier maintains distribution of membrane proteins in polarized neurons , 1999, Nature.

[76]  D. Debanne,et al.  GSK3 and β-catenin determines functional expression of sodium channels at the axon initial segment , 2012, Cellular and Molecular Life Sciences.

[77]  P. Somogyi,et al.  The cisternal organelle as a Ca2+-storing compartment associated with GABAergic synapses in the axon initial segment of hippocampal pyramidal neurones , 1994, Experimental Brain Research.