Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data

ABSTRACT The extraction of tectonic lineaments from digital satellite data is a fundamental application in remote sensing. The location of tectonic lineaments such as faults and dykes are of interest for a range of applications, particularly because of their association with hydrothermal mineralization. Although a wide range of applications have utilized computer vision techniques, a standard workflow for application of these techniques to tectonic lineament extraction is lacking. We present a framework for extracting tectonic lineaments using computer vision techniques. The proposed framework is a combination of edge detection and line extraction algorithms for extracting tectonic lineaments using optical remote sensing data. It features ancillary computer vision techniques for reducing data dimensionality, removing noise and enhancing the expression of lineaments. The efficiency of two convolutional filters are compared in terms of enhancing the lineaments. We test the proposed framework on Landsat 8 data of a mineral-rich portion of the Gascoyne Province in Western Australia. To validate the results, the extracted lineaments are compared to geologically mapped structures by the Geological Survey of Western Australia (GSWA). The results show that the best correlation between our extracted tectonic lineaments and the GSWA tectonic lineament map is achieved by applying a minimum noise fraction transformation and a Laplacian filter. Application of a directional filter shows a strong correlation with known sites of hydrothermal mineralization. Hence, our method using either filter can be used for mineral prospectivity mapping in other regions where faults are exposed and observable in optical remote sensing data.

[1]  Jianguo Liu,et al.  Essential Image Processing and GIS for Remote Sensing , 2009 .

[2]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Pierre Soille,et al.  Advances in mathematical morphology applied to geoscience and remote sensing , 2002, IEEE Trans. Geosci. Remote. Sens..

[4]  Amnon Meisels,et al.  Automatic Extraction and Evaluation of Geological Linear Features from Digital Remote Sensing Data Using a Hough Transform , 1996 .

[5]  Surface manifestations after the Gujarat earthquake , 2001 .

[6]  A. Maćkiewicz,et al.  Principal Components Analysis (PCA) , 1993 .

[7]  Wang Weixing,et al.  A Method of Road Extraction from High-resolution Remote Sensing Images Based on Shape Features , 2009 .

[8]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[9]  S. Occhipinti,et al.  Intracontinental reworking in the Capricorn Orogen, Western Australia: the 1680 – 1620 Ma Mangaroon Orogeny* , 2005 .

[10]  D. Rokos The Contribution of Remote Sensing to the Observation, Monitoring and Protection of the Environment , 1995 .

[11]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[12]  M. Pourkermani,et al.  Structural and Fault Analysis of Haji Abad with Interpretation of Landsat 8 Satellite Images , 2015 .

[13]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[14]  L. Eklundh,et al.  A Comparative analysis of standardised and unstandardised Principal Component Analysis in remote sensing , 1993 .

[15]  Liangpei Zhang,et al.  Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[16]  Richard Gloaguen,et al.  TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 2: Line Segments Linking and Merging , 2014, Remote. Sens..

[17]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[18]  Raymond H. Chan,et al.  Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization , 2005, IEEE Transactions on Image Processing.

[19]  Wade T. Crow,et al.  Comparison of adaptive filtering techniques for land surface data assimilation , 2008 .

[20]  F. Pirajno Metallogeny in the Capricorn Orogen, Western Australia, the result of multiple ore-forming processes , 2004 .

[21]  Thomas Cudahy,et al.  Hyperspectral remote sensing applied to uranium exploration: A case study at the Mary Kathleen metamorphic-hydrothermal U-REE deposit, NW, Queensland, Australia , 2017 .

[22]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  A. A. Burmistrov,et al.  Tectonophysics of hydrothermal ore formation: an example of the Antei Mo–U deposit, Transbaikalia , 2015, Geology of Ore Deposits.

[24]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[25]  A. Agangi,et al.  Neoproterozoic hydrothermal activity in the West Australian Craton related to Rodinia assembly or breakup? , 2019, Gondwana Research.

[26]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[27]  B. Rasmussen,et al.  Neoproterozoic 40Ar/39Ar mica ages mark the termination of a billion years of intraplate reworking in the Capricorn Orogen, Western Australia , 2018, Precambrian Research.

[28]  M. Wingate,et al.  Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia–Laurentia connection at 755 Ma , 2000 .

[29]  A. M. Cross,et al.  Detection of circular geological features using the Hough transform , 1988 .

[30]  R. Eggleton,et al.  Regolith geology and geomorphology , 2001 .

[31]  He Yajuan,et al.  Change patterns of linear features in remote sensing images in land use , 2008 .

[32]  H. Haddoum,et al.  Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data, case of the Chott El Gharbi Basin (western Algeria) , 2018, Arabian Journal of Geosciences.

[33]  Allan Aasbjerg Nielsen,et al.  Kernel Maximum Autocorrelation Factor and Minimum Noise Fraction Transformations , 2011, IEEE Transactions on Image Processing.

[34]  Jean-Loup Guyot,et al.  Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data , 2009 .

[35]  Abderrazak El Harti,et al.  Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas , 2017 .

[36]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[37]  Helmi Zulhaidi Mohd Shafri,et al.  Lineament mapping and its application in landslide hazard assessment: a review , 2010 .

[38]  Nureddin M. Saadi,et al.  Lineaments extraction and analysis in Eljufra area, Libya , 2008 .

[39]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[40]  H. Liu,et al.  Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods , 2004 .

[41]  Steven A. Smith,et al.  Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy) , 2015 .

[42]  Biswajeet Pradhan,et al.  Coupling of DEM and remote-sensing-based approaches for semi-automated detection of regional geostructural features in Zagros mountain, Iran , 2011, Arabian Journal of Geosciences.

[43]  Richard Gloaguen,et al.  TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and stream profile analysis , 2011, Comput. Geosci..

[44]  C. Scholz,et al.  Fault propagation and segmentation: insight from the microstructural examination of a small fault , 1999 .

[45]  Li Fangfang,et al.  STUDY ON INDEPENDENT COMPONENT ANALYSIS ’ APPLICATION IN CLASSIFICATION AND CHANGE DETECTION OF MULTISPECTRAL IMAGES , 2008 .

[46]  Mohamed Ali,et al.  Using the Canny edge detector for feature extraction and enhancement of remote sensing images , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[47]  M. Etheridge,et al.  Timing and Structural Controls on Gold Mineralization at the Bogoso Gold Mine, Ghana, West Africa , 2002 .

[48]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[49]  Jialin Wang,et al.  Automatic lineament extraction from potential-field images using the Radon transform and gradient calculation , 2006 .

[50]  Eleni Charou,et al.  Delineation of Lineaments from Satellite Data Based on Efficient Neural Network and Pattern Recognition Techniques , 2002 .

[51]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  S. Cox Deformational controls on the dynamics of fluid flow in mesothermal gold systems , 1999, Geological Society, London, Special Publications.

[53]  C. Kirkland,et al.  An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization , 2017 .

[54]  Jon Atli Benediktsson,et al.  Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images , 2010, Pattern Recognit. Lett..

[55]  A. Koschinsky,et al.  Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources , 2013 .

[56]  Zoubin Ghahramani,et al.  Unsupervised Learning , 2003, Advanced Lectures on Machine Learning.

[57]  Katsuaki Koike,et al.  Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt , 2006 .

[58]  Z. Niu,et al.  Pre-earthquake Anomaly Detection and Assessment through Lineament Changes Observation Using Multi-temporal Landsat 8-OLI Imageries: Case of Gorkha and Imphal , 2017 .

[59]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[60]  Rahul Dev Garg,et al.  Automatic Road Extraction from High Resolution Satellite Image using Adaptive Global Thresholding and Morphological Operations , 2013, Journal of the Indian Society of Remote Sensing.

[61]  Mazlan Hashim,et al.  Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery , 2013 .

[62]  V. Mantas,et al.  Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques , 2016 .

[63]  Abderrazak El Harti,et al.  Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas , 2016 .

[64]  Harald van der Werff,et al.  Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing , 2016, Remote. Sens..

[65]  K. Koike,et al.  Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data , 2011 .

[66]  Jason Budinoff,et al.  The Thermal Infrared Sensor on the Landsat Data Continuity Mission , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[67]  F. Akinluyi,et al.  Application of satellite remote sensing to groundwater potential modeling in Ejigbo area, Southwestern Nigeria , 2017, Modeling Earth Systems and Environment.

[68]  M. G. Brito,et al.  Remote Sensing for Mineral Exploration in Central Portugal , 2017 .

[69]  Faisal Hossain,et al.  Spatiotemporal interpolation of discharge across a river network by using synthetic SWOT satellite data , 2015 .

[70]  M. Mohamed,et al.  Mapping of tecto-lineaments and investigate their association with earthquakes in Egypt: a hybrid approach using remote sensing data , 2016 .

[71]  Qiuming Cheng,et al.  A comparative study of independent component analysis with principal component analysis in geological objects identification, Part I: Simulations , 2015 .

[72]  Richard Gloaguen,et al.  TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction , 2014, Remote. Sens..

[73]  Lei Zhang,et al.  An edge-guided image interpolation algorithm via directional filtering and data fusion , 2006, IEEE Transactions on Image Processing.

[74]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[75]  Ramadan Abdelaziz,et al.  Landsat-8 data for chromite prospecting in the Logar Massif, Afghanistan , 2018, Heliyon.

[76]  Guoqiang Ni,et al.  Road and linear structure automatic extraction , 2007, SPIE/COS Photonics Asia.

[77]  M. Hashim,et al.  Structural Mapping of the Bentong‐Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsular Malaysia: Implications for Sediment‐hosted/Orogenic Gold Mineral Systems Exploration , 2016 .

[78]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[79]  R. G. Tysdal,et al.  Structural Controls and Evolution of Gold-, Silver-, and REE-Bearing Copper-Cobalt Ore Deposits, Blackbird District, East-Central Idaho: Epigenetic Origins , 2011 .

[80]  N. Glasser,et al.  Structural, tectonic and glaciological controls on the evolution of fjord landscapes , 2009 .

[81]  Nureddin M. Saadi,et al.  Integration of DEM, ETM+, Geologic, and Magnetic Data for Geological Investigations in the Jifara Plain, Libya , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[82]  M. Hashim,et al.  Lineament mapping using multispectral remote sensing satellite data , 2010 .

[83]  J. Patel,et al.  Fuzzy inference based edge detection system using Sobel and Laplacian of Gaussian operators , 2011, ICWET.

[84]  P. Nagabhushan,et al.  A simple and robust line detection algorithm based on small eigenvalue analysis , 2004, Pattern Recognit. Lett..

[85]  Guojian Xu,et al.  Constraints of deep crustal structures on large deposits in the Cloncurry district, Australia: Evidence from spatial analysis , 2016 .

[86]  Yong Hoon Lee,et al.  A study of convex/concave edges and edge-enhancing operators based on the Laplacian , 1990 .

[87]  Robert O. Knuteson,et al.  Hyperspectral data noise characterization using principle component analysis: application to the atmospheric infrared sounder , 2007 .

[88]  P. Candela Controls on ore metal ratios in granite-related ore systems: an experimental and computational approach , 1992 .

[89]  Ottawa Kia Oy On Statistical Band Selection for Image Visualization , 2001 .

[90]  R. Nouri,et al.  Lineament Tectonics and Mineralizatin in Tarom Area, North Iran , 2015 .

[91]  Shuzhi Sam Ge,et al.  Robust line detection using two-orthogonal direction image scanning , 2011, Comput. Vis. Image Underst..

[92]  S. Robson,et al.  Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application , 2012 .

[93]  T. Kusky,et al.  Structural and remote sensing analysis of the Betsimisaraka Suture in northeastern Madagascar , 2009 .

[94]  M. Arian,et al.  Tectonics and Mineralisation of Copper in the Ardestan-Kahang Area, Central Iran by Remote Sensing , 2015 .

[95]  Konstantinos Karantzalos,et al.  Improving edge detection and watershed segmentation with anisotropic diffusion and morphological levellings , 2006 .

[96]  Snehamoy Chatterjee,et al.  Computer vision-based limestone rock-type classification using probabilistic neural network , 2016 .

[97]  Ramesh P. Singh,et al.  Changes in stress pattern around epicentral region of Bhuj earthquake of 26 January 2001 , 2005 .

[98]  I. Fletcher,et al.  Radiogenic heating and craton‐margin plate stresses as drivers for intraplate orogeny , 2017 .

[99]  Predrag Vucinić,et al.  Automatic landmarking of cephalograms using active appearance models. , 2010, European journal of orthodontics.

[100]  D. Craw Fluid flow at fault intersections in an active oblique collision zone, Southern Alps, New Zealand , 2000 .

[101]  A. Carlton,et al.  Geological application of ASTER remote sensing within sparsely outcropping terrain, Central New South Wales, Australia , 2017 .

[102]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[103]  Yongjun Lu,et al.  Extensional episodes in the Paleoproterozoic Capricorn Orogen, Western Australia, revealed by petrogenesis and geochronology of mafic–ultramafic rocks , 2018 .

[104]  A. M. Thorne,et al.  In situ U-Pb geochronology of xenotime and monazite from the Abra polymetallic deposit in the Capricorn Orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure , 2015 .

[105]  G. Dunteman Principal Components Analysis , 1989 .

[106]  Katsuaki Koike,et al.  Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments , 2017, Comput. Geosci..

[107]  Peter Kovesi,et al.  Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach , 2014, Comput. Geosci..

[108]  Jian Ji,et al.  Unsupervised synthetic aperture radar image segmentation with superpixels in independent space based on independent component analysis , 2014 .

[109]  Derek M. Rogge,et al.  Mapping lithology in Canada's Arctic: application of hyperspectral data using the minimum noise fraction transformation and matched filtering , 2005 .

[110]  T. R. Farrell,et al.  Grenvillian‐aged orogenesis in the Palaeoproterozoic Gascoyne Complex, Western Australia: 1030–950 Ma reworking of the Proterozoic Capricorn Orogen , 2007 .

[111]  Simone G. O. Fiori,et al.  Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing , 2003, Neural Networks.

[112]  Mazlan Hashim,et al.  Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia , 2015 .

[113]  Lei Liu,et al.  Targeting Mineral Resources with Remote Sensing and Field Data in the Xiemisitai Area, West Junggar, Xinjiang, China , 2013, Remote. Sens..

[114]  I. Fletcher,et al.  Isotopic dating of the migration of a low-grade metamorphic front during orogenesis , 2005 .

[115]  I. Fletcher,et al.  Two collisions, two sutures: Punctuated pre-1950 Ma assembly of the West Australian Craton during the Ophthalmian and Glenburgh Orogenies , 2011 .

[116]  M. Wingate,et al.  Monazite trumps zircon: applying SHRIMP U–Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen , 2017, Contributions to Mineralogy and Petrology.

[117]  Boguslaw Cyganek,et al.  Combined Detector of Locally-Oriented Structures and Corners in Images Based on a Scale-Space Tensor Representation of Local Neighborhoods of Pixels , 2003, International Conference on Computational Science.

[118]  Mazlan Hashim,et al.  Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia , 2014 .

[119]  Nitin K. Tripathi,et al.  Directional morphological image transforms for lineament extraction from remotely sensed images , 2000 .

[120]  I. Fletcher,et al.  A tale of two basins? Stratigraphy and detrital zircon provenance of the Palaeoproterozoic Turee Creek and Horseshoe basins of Western Australia , 2017 .

[121]  Paul F. Whelan,et al.  Computational approach for edge linking , 2002, J. Electronic Imaging.

[122]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[123]  Matthias S. Moeller,et al.  Application of Remote Sensing Technologies to Map the Structural Geology of Central Region of Kenya , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[124]  S. Reddy,et al.  Unravelling complex geologic histories using U–Pb and trace element systematics of titanite , 2019, Chemical Geology.

[125]  Hong Man,et al.  Similar neighborhood criterion for edge detection in noisy and noise-free images , 2008, 2008 International Multiconference on Computer Science and Information Technology.

[126]  Z. Niu,et al.  Observation of short-term variations in the clay minerals ratio after the 2015 Chile great earthquake $$(8.3M_{\mathrm{w}})$$(8.3Mw) using Landsat 8 OLI data , 2019, Journal of Earth System Science.

[127]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[128]  M. E. Janati,et al.  Application of ASTER remote sensing data to geological mapping of basement domains in arid regions: a case study from the Central Anti-Atlas, Iguerda inlier, Morocco , 2014, Arabian Journal of Geosciences.

[129]  Ute Beyer,et al.  Remote Sensing And Image Interpretation , 2016 .

[130]  David G. Long,et al.  Computer vision applications to the study of sea-ice motion in Antarctica , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[131]  C. Bhuiyan Hydrological characterisation of geological lineaments: a case study from the Aravalli terrain, India , 2015, Hydrogeology Journal.

[132]  A. M. Thorne,et al.  Crustal architecture of the Capricorn Orogen, Western Australia and associated metallogeny , 2013 .

[133]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[134]  Richard J. Lisle,et al.  Geological Structures and Maps: A Practical Guide , 1996 .

[135]  James T. Kwok,et al.  Clustered Nyström Method for Large Scale Manifold Learning and Dimension Reduction , 2010, IEEE Transactions on Neural Networks.

[136]  Jinfei Wang,et al.  Linda — A System for Automated Linear Feature Detection and Analysis , 1993 .

[137]  Prasad S. Thenkabail,et al.  Hyperspectral Remote Sensing for Terrestrial Applications , 2015 .

[138]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[139]  M. Olorunfemi,et al.  Investigation of the influence of lineaments, lineament intersections and geology on groundwater yield in the basement complex terrain of Ondo State, Southwestern Nigeria , 2018, Applied Water Science.