CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS

We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.

[1]  John I. Castor,et al.  Radiation Hydrodynamics: List of figures , 2004 .

[2]  I. V. Sokolov,et al.  CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS—IMPLEMENTATION AND VERIFICATION , 2011, 1101.3758.

[3]  H. Toki,et al.  Relativistic equation of state of nuclear matter for supernova explosion , 1998 .

[4]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[5]  J. Robert Buchler,et al.  Radiation transfer in the fluid frame. , 1983 .

[6]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[7]  Robert Weaver,et al.  The RAGE radiation-hydrodynamic code , 2008 .

[8]  G. N. Minerbo,et al.  Maximum entropy Eddington factors , 1978 .

[9]  E. Livne,et al.  Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions , 2007 .

[10]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[11]  K. Kotake,et al.  THREE-DIMENSIONAL HYDRODYNAMIC CORE-COLLAPSE SUPERNOVA SIMULATIONS FOR AN 11.2 M☉ STAR WITH SPECTRAL NEUTRINO TRANSPORT , 2011, 1108.3989.

[12]  A. Burrows,et al.  On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.

[13]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[14]  Anthony Mezzacappa,et al.  A numerical method for solving the neutrino Boltzmann equation coupled to spherically symmetric stellar core collapse , 1993 .

[15]  Kei Kotake,et al.  Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae , 2005, astro-ph/0509456.

[16]  A. Burrows,et al.  A New Algorithm for Two-Dimensional Transport for Astrophysical Simulations. I. General Formulation and Tests for the One-Dimensional Spherical Case , 2006, astro-ph/0609049.

[17]  Edward W. Larsen,et al.  A synthetic acceleration scheme for radiative diffusion calculations , 1985 .

[18]  C. L. Fryer,et al.  Modeling Core-Collapse Supernovae in Three Dimensions , 2002 .

[19]  Robert B. Lowrie,et al.  Radiative shock solutions with grey nonequilibrium diffusion , 2008 .

[20]  A. Marek,et al.  DELAYED NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS AIDED BY THE STANDING ACCRETION-SHOCK INSTABILITY , 2007, 0708.3372.

[21]  James R. Wilson,et al.  Convection above the neutrinosphere in type II supernovae , 1993 .

[22]  G. C. Pomraning,et al.  A flux-limited diffusion theory , 1981 .

[23]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[24]  L. H. Howell,et al.  CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. I. HYDRODYNAMICS AND SELF-GRAVITY , 2010, 1005.0114.

[25]  F. Douglas Swesty,et al.  A NUMERICAL ALGORITHM FOR MODELING MULTIGROUP NEUTRINO-RADIATION HYDRODYNAMICS IN TWO SPATIAL DIMENSIONS , 2006 .

[26]  Michael S. Warren,et al.  SNSPH: A Parallel Three-dimensional Smoothed Particle Radiation Hydrodynamics Code , 2005, astro-ph/0512532.

[27]  G. C. Pomraning,et al.  A family of flux-limited diffusion theories. , 1991 .

[28]  Richard I. Klein,et al.  Equations and Algorithms for Mixed-frame Flux-limited Diffusion Radiation Hydrodynamics , 2006 .

[29]  Phillip Colella,et al.  Higher order Godunov methods for general systems of hyperbolic conservation laws , 1989 .

[30]  R. L. Bowers,et al.  A numerical model for stellar core collapse calculations , 1982 .

[31]  W. Benz,et al.  Inside the Supernova: A Powerful Convective Engine , 1994, astro-ph/9404024.

[32]  A. Burrows,et al.  DIMENSION AS A KEY TO THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS , 2010, 1006.3792.

[33]  Frank Graziani Computational methods in transport : verification and validation , 2008 .

[34]  J. Buchler,et al.  Neutrino transport in supernova models: A multigroup, flux limited diffusion scheme , 1978 .

[35]  Gordon L. Olson,et al.  Non-grey benchmark results for two temperature non-equilibrium radiative transfer , 1999 .

[36]  Joshua C. Dolence,et al.  A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT , 2012, 1203.2915.

[37]  James R. Wilson,et al.  X-ray emission from a neutron star accreting material , 1973 .

[38]  S. Eisenstat Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[39]  H. Janka,et al.  Radiation hydrodynamics with neutrinos - Variable Eddington factor method for core-collapse supernova simulations , 2002, astro-ph/0203101.

[40]  Department of Astrophysical Sciences,et al.  Two-Dimensional Multiangle, Multigroup Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores , 2008, 0804.0239.

[41]  O. E. Bronson Messer,et al.  ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1112.3595.

[42]  Neutrino opacities in nuclear matter , 2004, astro-ph/0404432.

[43]  Jim E. Morel,et al.  Linear multifrequency-grey acceleration recast for preconditioned Krylov iterations , 2007, J. Comput. Phys..

[44]  S. Bruenn,et al.  Stellar core collapse - Numerical model and infall epoch , 1985 .

[45]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport - I. Numerical method and results for a 15 solar mass star , 2005, astro-ph/0507135.

[46]  J. H. Bolstad,et al.  An exact solution for the linearized multifrequency radiation diffusion equation , 2005 .

[47]  B. A. Clark,et al.  Computing multigroup radiation integrals using polylogarithm-based methods , 1987 .

[48]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[49]  A. Burrows,et al.  CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS , 2011, 1105.2466.

[50]  A. Burrows,et al.  Two-dimensional, Time-dependent, Multigroup, Multiangle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context , 2003, astro-ph/0312633.

[51]  Adam Burrows,et al.  Shock Breakout in Core-Collapse Supernovae and Its Neutrino Signature , 2002, astro-ph/0211194.

[52]  A. Burrows,et al.  A New Algorithm for Supernova Neutrino Transport and Some Applications , 1999, astro-ph/9905132.

[53]  H. A. Bethe,et al.  Supernova mechanisms. [SN 1987a] , 1990 .

[54]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[55]  Hong Shen,et al.  Relativistic equation of state of nuclear matter for supernova and neutron star , 1998 .