Generating steep, shear-free gradients of small molecules for cell culture

[1]  A. Folch,et al.  Biomolecular gradients in cell culture systems. , 2008, Lab on a chip.

[2]  Masayuki Yamato,et al.  On-chip cell migration assay using microfluidic channels. , 2007, Biomaterials.

[3]  Taesung Kim,et al.  Biomolecular motor-driven microtubule translocation in the presence of shear flow: modeling microtubule deflection due to shear , 2007, Biomedical microdevices.

[4]  Shuichi Takayama,et al.  Leakage-free bonding of porous membranes into layered microfluidic array systems. , 2007, Analytical chemistry.

[5]  Meng-Ping Chang,et al.  A class of low voltage, elastomer-metal 'wet' actuators for use in high-density microfluidics. , 2007, Lab on a chip.

[6]  A. Groisman,et al.  Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. , 2007, Lab on a chip.

[7]  Y. Kalaidzidis,et al.  Kinetics of Morphogen Gradient Formation , 2007, Science.

[8]  Arthur D Lander,et al.  Morpheus Unbound: Reimagining the Morphogen Gradient , 2007, Cell.

[9]  A. Folch,et al.  Microfluidic “jets” for generating steady-state gradients of soluble molecules on open surfaces , 2006 .

[10]  T. Mukherjee,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Systematic Modeling of Microfluidic Concentration Gradient Generators , 2022 .

[11]  K. Jensen,et al.  Cells on chips , 2006, Nature.

[12]  Shur-Jen Wang,et al.  A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis , 2006, Biomedical microdevices.

[13]  B. Chung,et al.  A microfluidic multi-injector for gradient generation. , 2006, Lab on a chip.

[14]  M. Toner,et al.  Universal microfluidic gradient generator. , 2006, Analytical chemistry.

[15]  David J Beebe,et al.  Characterization of a membrane-based gradient generator for use in cell-signaling studies. , 2006, Lab on a chip.

[16]  A. Khademhosseini,et al.  Microscale technologies for tissue engineering and biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  James Briscoe,et al.  The interpretation of morphogen gradients , 2006, Development.

[18]  David J Beebe,et al.  Diffusion dependent cell behavior in microenvironments. , 2005, Lab on a chip.

[19]  J. Wikswo,et al.  Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. , 2005, Lab on a chip.

[20]  B. Chung,et al.  Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. , 2005, Lab on a chip.

[21]  P. Stewart,et al.  Rapid Diffusion of Fluorescent Tracers into Staphylococcus epidermidis Biofilms Visualized by Time Lapse Microscopy , 2005, Antimicrobial Agents and Chemotherapy.

[22]  S. Takayama,et al.  Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation. , 2004, The Analyst.

[23]  Joshua D. Tice,et al.  Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  L. Raftery,et al.  Gradients and thresholds: BMP response gradients unveiled in Drosophila embryos. , 2003, Trends in genetics : TIG.

[25]  O. Shimmi,et al.  Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo , 2003, Development.

[26]  G. Whitesides,et al.  Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device , 2002, Nature Biotechnology.

[27]  Qing Nie,et al.  Do morphogen gradients arise by diffusion? , 2002, Developmental cell.

[28]  G. Whitesides,et al.  Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools. , 2001, Analytical chemistry.

[29]  J. Gurdon,et al.  Morphogen gradient interpretation , 2001, Nature.

[30]  George M. Whitesides,et al.  Laminar flows: Subcellular positioning of small molecules , 2001, Nature.

[31]  G. Whitesides,et al.  Generation of Gradients Having Complex Shapes Using Microfluidic Networks , 2001 .

[32]  G. Whitesides,et al.  Generation of Solution and Surface Gradients Using Microfluidic Systems , 2000 .

[33]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[34]  Mark R. Wiesner,et al.  Slip at a uniformly porous boundary: effect on fluid flow and mass transfer , 1992 .

[35]  M. El-Sabban,et al.  Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium , 1991, The Journal of cell biology.

[36]  D Zicha,et al.  A new direct-viewing chemotaxis chamber. , 1991, Journal of cell science.

[37]  L. Hamm,et al.  Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. , 1989, The American journal of physiology.

[38]  A. K. Covington Handbook of Aqueous Electrolyte Solutions. Physical Properties, Estimation and Correlation methods , 1986 .

[39]  J. Koryta Diffusion. Mass Transfer in Fluid Systems : E.L. Cussler. Cambridge University Press, Cambridge, 1984, xii + 525 pp., £32.50, $49.50 , 1985 .

[40]  Zigmond Sh Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. , 1977 .

[41]  S. Boyden THE CHEMOTACTIC EFFECT OF MIXTURES OF ANTIBODY AND ANTIGEN ON POLYMORPHONUCLEAR LEUCOCYTES , 1962, The Journal of experimental medicine.