The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

Abstract. SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

[1]  Jeffrey P. Walker,et al.  An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme , 2009 .

[2]  L. Prieur,et al.  A 1 year sea surface heat budget in the northeastern Atlantic basin during the POMME experiment: 2. Flux optimization : Subduction, water mass transformation, biochemical tracer distributions, and carbon cycle in the Northeast Atlantic Ocean at Mesoscale: The POMME Experiment , 2005 .

[3]  Aaron Boone,et al.  Simulation of Northern Eurasian Local Snow Depth, Mass, and Density Using a Detailed Snowpack Model and Meteorological Reanalyses , 2013 .

[4]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[5]  H. Douville,et al.  A Simple Groundwater Scheme for Hydrological and Climate Applications: Description and Offline Evaluation over France , 2012 .

[6]  P. Milly,et al.  A mass-conservative procedure for time-stepping in models of unsaturated flow , 1985 .

[7]  D. Verseghy,et al.  Class—A Canadian land surface scheme for GCMS. I. Soil model , 2007 .

[8]  V. Masson,et al.  Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas , 2012 .

[9]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[10]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[11]  J. Mahfouf,et al.  Inclusion of Gravitational Drainage in a Land Surface Scheme Based on the Force-Restore Method. , 1996 .

[12]  A. Lemonsu,et al.  Evaluation of the Town Energy Balance Model in Cold and Snowy Conditions during the Montreal Urban Snow Experiment 2005 , 2010 .

[13]  Pierre Etchevers,et al.  Simulation of the water budget and the river flows of the Rhone basin from 1981 to 1994 , 2001 .

[14]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[15]  Randal D. Koster,et al.  Bias reduction in short records of satellite soil moisture , 2004 .

[16]  Wolfgang Wagner,et al.  Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France , 2011 .

[17]  A. Cazenave,et al.  Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges , 2010 .

[18]  D. Verseghy,et al.  CLASS-A Canadian Land Surface Scheme for GCMs , 1993 .

[19]  T. Rezoug,et al.  Importance of the surface size distribution of erodible material: an improvement on the Dust Entrainment And Deposition (DEAD) Model , 2011 .

[20]  Florence Habets,et al.  Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France , 2008 .

[21]  E. Martin,et al.  The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2 , 2012 .

[22]  Jean-Christophe Calvet,et al.  Modelling energy and CO2 fluxes with an interactive vegetation land surface model-Evaluation at high and middle latitudes , 2008 .

[23]  E. Todini,et al.  A rainfall–runoff scheme for use in the Hamburg climate model , 1992 .

[24]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[25]  Valéry Masson,et al.  “Grand Paris”: regional landscape change to adapt city to climate warming , 2013, Climatic Change.

[26]  Valéry Masson,et al.  Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille , 2004 .

[27]  E. Martin,et al.  Improvement, calibration and validation of a distributed hydrological model over France , 2008 .

[28]  Philippe Gaspar,et al.  A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site , 1990 .

[29]  V. Masson,et al.  Inclusion of a Drag Approach in the Town Energy Balance (TEB) Scheme: Offline 1D Evaluation in a Street Canyon , 2008 .

[30]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[31]  V. Ducrocq,et al.  Benefit of coupling the ISBA land surface model with a TOPMODEL hydrological model version dedicated to Mediterranean flash-floods , 2010 .

[32]  R. H. Brooks,et al.  Properties of Porous Media Affecting Fluid Flow , 1966 .

[33]  Jean-François Mahfouf,et al.  Root zone soil moisture from the assimilation of screen‐level variables and remotely sensed soil moisture , 2011 .

[34]  W. Kustas,et al.  Wind profile constants in a neutral atmospheric boundary layer over complex terrain , 1986 .

[35]  E. Heise,et al.  Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO , 2010 .

[36]  H. Giordani,et al.  Diagnosing vertical motion in the Equatorial Atlantic , 2011 .

[37]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[38]  H. Giordani,et al.  The Land Surface Scheme ISBA within the Météo-France Climate Model ARPEGE. Part I. Implementation and Preliminary Results , 1995 .

[39]  Florence Habets,et al.  Impact of an Exponential Profile of Saturated Hydraulic Conductivity within the ISBA LSM: Simulations over the Rhône Basin , 2006 .

[40]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[41]  Etienne Leblois,et al.  Simulation of the water budget and the river flows of the Rhone basin , 1999 .

[42]  Jean-Pierre Wigneron,et al.  Monitoring of water and carbon fluxes using a land data assimilation system: a case study for southwestern France , 2010 .

[43]  R. Haverkamp,et al.  Bare-ground surface heat and water exchanges under dry conditions: Observations and parameterization , 1993 .

[44]  Michael Schulz,et al.  Sea-salt aerosol source functions and emissions , 2004 .

[45]  Jonathan P. Taylor,et al.  Studies with a flexible new radiation code. II: Comparisons with aircraft short‐wave observations , 1996 .

[46]  Pierre Etchevers,et al.  An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model: Local-Scale Evaluation at an Alpine Site , 2001 .

[47]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[48]  Jean-Pierre Wigneron,et al.  Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France , 2009 .

[49]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[50]  Isabel F. Trigo,et al.  Incoming Solar and Infrared Radiation Derived from METEOSAT: Impact on the Modeled Land Water and Energy Budget over France , 2012 .

[51]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .

[52]  L. Kantha,et al.  An improved mixed layer model for geophysical applications , 1994 .

[53]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[54]  A. Druilhet,et al.  Impact of Subgrid-Scale Orography Parameterization on the Simulation of Orographic Flows , 1994 .

[55]  C. Albergel,et al.  Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study , 2011 .

[56]  E. Brun,et al.  A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting , 1992, Journal of Glaciology.

[57]  Keith Beven,et al.  On hydrologic similarity: 2. A scaled model of storm runoff production , 1987 .

[58]  S. Belair,et al.  The New Canadian Urban Modelling System: Evaluation for Two Cases from the Joint Urban 2003 Oklahoma City Experiment , 2009 .

[59]  P. Bartelt,et al.  A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model , 2002 .

[60]  Dennis P. Lettenmaier,et al.  Hydrologic effects of frozen soils in the upper Mississippi River basin , 1999 .

[61]  R. Dickinson,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[62]  Véronique Ducrocq,et al.  Coupling the ISBA Land Surface Model and the TOPMODEL Hydrological Model for Mediterranean Flash-Flood Forecasting: Description, Calibration, and Validation , 2010 .

[63]  Vincent Rivalland,et al.  Modelling forest transpiration and CO2 fluxes—response to soil moisture stress , 2004 .

[64]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[65]  Hervé Giordani,et al.  Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes , 1999 .

[66]  S. Planton,et al.  Toward a Better Determination of Turbulent Air–Sea Fluxes from Several Experiments , 2003 .

[67]  Hervé Giordani,et al.  A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum , 1995 .

[68]  Vincent Guidard,et al.  Snow/atmosphere coupled simulation at Dome C, Antarctica , 2011, Journal of Glaciology.

[69]  J. Goudriaan,et al.  Photosynthesis, CO2 and Plant Production , 1985 .

[70]  P. Termonia,et al.  Coupling the Town Energy Balance (TEB) Scheme to an Operational Limited-Area NWP Model: Evaluation for a Highly Urbanized Area in Belgium , 2012 .

[71]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[72]  J. Crétaux,et al.  Hydrology and Earth System Sciences Evaluation of the Isba-trip Continental Hydrologic System over the Niger Basin Using in Situ and Satellite Derived Datasets v. Pedinotti Et Al.: Isba-trip Continental Hydrologic System over the Niger Basin , 2022 .

[73]  C. Jacobs,et al.  Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions , 1996 .

[74]  Eric F. Wood,et al.  A soil‐vegetation‐atmosphere transfer scheme for modeling spatially variable water and energy balance processes , 1997 .

[75]  Richard Essery,et al.  Explicit representation of subgrid heterogeneity in a GCM land surface scheme , 2003 .

[76]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[77]  George R. Blake,et al.  Thermal Properties of Soils , 1950 .

[78]  Bruno Bueno,et al.  Development and evaluation of a building energy model integrated in the TEB scheme , 2011 .

[79]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[80]  F. Habets,et al.  Subgrid runoff parameterization , 2001 .

[81]  Georges-Marie Saulnier,et al.  Hydrologic Visibility of Weather Radar Systems Operating in Mountainous Regions: Case Study for the Ardèche Catchment (France) , 2002 .

[82]  J. Flexas,et al.  The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? , 2009, Journal of experimental botany.

[83]  Kelly Elder,et al.  Evaluation of forest snow processes models (SnowMIP2) , 2009 .

[84]  G. Thirel,et al.  A past discharge assimilation system for ensemble streamflow forecasts over France - Part 2: Impact on the ensemble streamflow forecasts , 2010 .

[85]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[86]  Jon Wiernga Representative roughness parameters for homogeneous terrain , 1993 .

[87]  Marc Lynch-Stieglitz,et al.  The development and validation of a simple snow model for the GISS GCM , 1994 .

[88]  W. Parton,et al.  Analysis of factors controlling soil organic matter levels in Great Plains grasslands , 1987 .

[89]  Sensitivity of three Mediterranean heavy rain events to two different sea surface fluxes parameterizations in high‐resolution numerical modeling , 2008 .

[90]  C. Bhumralkar Numerical Experiments on the Computation of Ground Surface Temperature in an Atmospheric General Circulation Model , 1975 .

[91]  E. Martin,et al.  Impact of the use of a CO 2 responsive land surface model in simulating the effect of climate change on the hydrology of French Mediterranean basins , 2011 .

[92]  J. Mahfouf,et al.  Assimilation of satellite‐derived soil moisture from ASCAT in a limited‐area NWP model , 2010 .

[93]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[94]  W. Green Studies in soil physics : I. The flow of air and water through soils , 1911 .

[95]  Jean-François Mahfouf,et al.  Evaluation of the Optimum Interpolation and Nudging Techniques for Soil Moisture Analysis Using FIFE Data , 2000 .

[96]  Jan Polcher,et al.  A Proposed Structure for Coupling Tiled Surfaces with the Planetary Boundary Layer , 2004 .

[97]  E. S. Krayenhoff,et al.  Initial results from Phase 2 of the international urban energy balance model comparison , 2011 .

[98]  Yann Kerr,et al.  Joint assimilation of surface soil moisture and LAI observations into a land surface model , 2008 .

[99]  C. Zender,et al.  Quantifying mineral dust mass budgets:Terminology, constraints, and current estimates , 2004 .

[100]  Naota Hanasaki,et al.  GSWP-2 Multimodel Analysis and Implications for Our Perception of the Land Surface , 2006 .

[101]  A. Pitman,et al.  The validation of a snow parameterization designed for use in general circulation models , 1998 .

[102]  Pedro Viterbo,et al.  An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation. , 1995 .

[103]  A. Gemant The Thermal Conductivity of Soils , 1950 .

[104]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[105]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[106]  A. Beljaars,et al.  A new parametrization of turbulent orographic form drag , 2004 .

[107]  E. Martin,et al.  An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecasting , 1989, Journal of Glaciology.

[108]  Zong-Liang Yang,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[109]  G. Hornberger,et al.  Empirical equations for some soil hydraulic properties , 1978 .

[110]  Josef M. Oberhuber,et al.  Snow cover model for global climate simulations , 1993 .

[111]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[112]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[113]  B. Hicks,et al.  A canopy stomatal resistance model for gaseous deposition to vegetated surfaces , 1987 .

[114]  Maria Tombrou,et al.  The International Urban Energy Balance Models Comparison Project: First Results from Phase 1 , 2010 .

[115]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[116]  D. Vidal-Madjar,et al.  The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area Part I: Model and database , 1999 .

[117]  Timothy R. Oke,et al.  Evaluation of the Town Energy Balance (TEB) Scheme with Direct Measurements from Dry Districts in Two Cities , 2002 .

[118]  R. Dickinson,et al.  Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2(d) experiment at Valdai, Russia , 2003 .

[119]  F. Solmon,et al.  Isoprene and monoterpenes biogenic emissions in France: modeling and impact during a regional pollution episode , 2004 .

[120]  B. Hicks,et al.  Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation , 1977 .

[121]  Aaron Boone,et al.  Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions , 2011 .

[122]  W. Green,et al.  Studies on Soil Phyics. , 1911, The Journal of Agricultural Science.

[123]  X. Briottet,et al.  The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment , 2008 .

[124]  Jean-Louis Roujean,et al.  Past and future scenarios of the effect of carbon dioxide on plant growth and transpiration for three vegetation types of southwestern France , 2007 .

[125]  J. Smith,et al.  Fractional coverage of rainfall over a grid: Analyses of NEXRAD data over the southern Plains , 1996 .

[126]  R. Armstrong,et al.  Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling , 2010 .

[127]  N. Wood,et al.  The Pressure force induced by neutral, turbulent flow over hills , 1993 .

[128]  E. Bazile,et al.  Implementation of a New Assimilation Scheme for Soil and Surface Variables in a Global NWP Model , 2000 .

[129]  H. Douville,et al.  Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations , 2006 .

[130]  E. Blyth,et al.  Defining area-average parameters in meteorological models for land surfaces with mesoscale heterogeneity , 1997 .

[131]  R. Jordan A One-dimensional temperature model for a snow cover : technical documentation for SNTHERM.89 , 1991 .

[132]  F. Habets,et al.  Simulation of a Scandinavian basin using the diffusion transfer version of ISBA , 2003 .

[133]  Bertrand Decharme,et al.  Introduction of a sub-grid hydrology in the ISBA land surface model , 2006 .

[134]  S. Ştefănescu,et al.  An overview of the variational assimilation in the ALADIN/France numerical weather‐prediction system , 2005 .

[135]  Fabienne Maignan,et al.  Modelling LAI, surface water and carbon fluxes at high-resolution over France: comparison of ISBA-A-gs and ORCHIDEE. , 2011 .

[136]  H. Douville,et al.  Global off-line evaluation of the ISBA-TRIP flood model , 2012, Climate Dynamics.

[137]  L. Prieur,et al.  A 1 year mesoscale simulation of the northeast Atlantic: Mixed layer heat and mass budgets during the POMME experiment , 2005 .

[138]  Ingegärd Eliasson,et al.  Urban Modification of the Surface Energy Balance in the West African Sahel: Ouagadougou, Burkina Faso , 2005 .

[139]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[140]  Clément Albergel,et al.  Evaluation of the observation operator Jacobian for leaf area index data assimilation with an extended Kalman filter , 2010 .

[141]  Bertrand Decharme,et al.  Global validation of the ISBA sub-grid hydrology , 2007 .

[142]  V. Masson Urban surface modeling and the meso-scale impact of cities , 2006 .

[143]  Gérald Desroziers,et al.  Background‐error covariances for a convective‐scale data‐assimilation system: AROME–France 3D‐Var , 2011 .

[144]  R. Dickinson,et al.  The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d) , 2001 .

[145]  Jean-Christophe Calvet,et al.  Modelling CO2-enrichment effects using an interactive vegetation SVAT scheme , 2001 .

[146]  C. S. B. Grimmond,et al.  Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre , 2005 .

[147]  H. Ritzdorf,et al.  OASIS4 – a coupling software for next generation earth system modelling , 2009 .

[148]  A. Porson,et al.  How Many Facets are Needed to Represent the Surface Energy Balance of an Urban Area? , 2009 .

[149]  Thomas A. Hennig,et al.  The Shuttle Radar Topography Mission , 2001, Digital Earth Moving.

[150]  Dmitrii Mironov,et al.  First steps of a lake model intercomparison project: LakeMIP , 2010 .

[151]  Jean-Louis Roujean,et al.  Observed and modelled ecosystem respiration and gross primary production of a grassland in southwestern France. , 2010 .

[152]  Bruno Blanke,et al.  Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two Different Mixed-Layer Physics , 1993 .

[153]  R. Dickinson,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[154]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[155]  E. Anderson,et al.  A point energy and mass balance model of a snow cover , 1975 .

[156]  V. Masson,et al.  Including Atmospheric Layers in Vegetation and Urban Offline Surface Schemes , 2009 .

[157]  Martin Beniston,et al.  Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one‐dimensional lake models , 2009 .

[158]  Hiroshi Komiyama,et al.  Development of a Multi-Layer Urban Canopy Model for the Analysis of Energy Consumption in a Big City: Structure of the Urban Canopy Model and its Basic Performance , 2005 .

[159]  Alberto Martilli,et al.  A Dynamic Urban Canopy Parameterization for Mesoscale Models Based on Computational Fluid Dynamics Reynolds-Averaged Navier–Stokes Microscale Simulations , 2010 .

[160]  R. B. Jackson,et al.  A global analysis of root distributions for terrestrial biomes , 1996, Oecologia.

[161]  Zong-Liang Yang,et al.  The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment:: 1. Experiment description and summary intercomparisons , 1998 .

[162]  Jean-Louis Roujean,et al.  Ability of the land surface model ISBA‐A‐gs to simulate leaf area index at the global scale: Comparison with satellites products , 2006 .

[163]  R. L. Petersen,et al.  A wind tunnel evaluation of methods for estimating surface roughness length at industrial facilities , 1997 .

[164]  C. S. B. Grimmond,et al.  Evaluation of the Urban Tile in MOSES using Surface Energy Balance Observations , 2006 .

[165]  E. Martin,et al.  Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling , 2012 .

[166]  V. Masson,et al.  Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme , 2008 .

[167]  J. Deardorff A Parameterization of Ground-Surface Moisture Content for Use in Atmospheric Prediction Models , 1977 .

[168]  Dmitrii Mironov,et al.  An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1 , 2012 .

[169]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[170]  L. Gomes,et al.  Dusty weather forecasts using the MesoNH mesoscale atmospheric model , 2006 .

[171]  J. Noilhan,et al.  The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area: Part II: Simulation of streamflows and annual water budget , 1999 .

[172]  Patrice G. Mestayer,et al.  Parameterization of the Urban Water Budget with the Submesoscale Soil Model , 2006 .

[173]  Catherine Ottlé,et al.  The AMMA Land Surface Model Intercomparison Project (ALMIP) , 2007 .

[174]  Stéphane Bélair,et al.  Operational Implementation of the ISBA Land Surface Scheme in the Canadian Regional Weather Forecast Model. Part II: Cold Season Results , 2003 .

[175]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[176]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[177]  J. Noilhan,et al.  GCM grid-scale evaporation from mesoscale modeling , 1995 .

[178]  Jean-Louis Roujean,et al.  ECOCLIMAP-II: An ecosystem classification and land surface parameters database of Western Africa at 1 km resolution for the African Monsoon Multidisciplinary Analysis (AMMA) project , 2010 .

[179]  Anny Cazenave,et al.  Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage , 2010 .

[180]  J. Baker,et al.  The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic , 1996 .

[181]  H. Giordani,et al.  A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign , 2011 .

[182]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[183]  Valéry Masson,et al.  A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models , 2000 .

[184]  D. Livingstone,et al.  Modeling 50 years of historical temperature profiles in a large central European lake , 2002 .

[185]  Jean-Christophe Calvet,et al.  Investigating soil and atmospheric plant water stress using physiological and micrometeorological data , 2000 .

[186]  Eric F. Wood,et al.  A land-surface hydrology parameterization with subgrid variability for general circulation models , 1992 .

[187]  P. Mason,et al.  Observations of boundary-layer structure over complex terrain , 1990 .

[188]  H. Charnock Wind stress on a water surface , 1955 .

[189]  J. Geleyn,et al.  Cloud and Precipitation Parameterization in a Meso-Gamma-Scale Operational Weather Prediction Model , 2009 .

[190]  Timothy R. Oke,et al.  An objective urban heat storage model and its comparison with other schemes , 1991 .

[191]  Improvement, calibration and validation of a distributed hydrological model over France , 2008 .

[192]  Jean-Christophe Calvet,et al.  Inclusion of a Third Soil Layer in a Land Surface Scheme Using the Force–Restore Method , 1999 .

[193]  D. Blanchard,et al.  The Production, Distribution, and Bacterial Enrichment of the Sea-Salt Aerosol , 1983 .

[194]  G. S. Campbell,et al.  An Analysis of Sensible and Latent Heat Flow in a Partially Frozen Unsaturated Soil , 1978 .

[195]  A. Martilli Numerical Study of Urban Impact on Boundary Layer Structure: Sensitivity to Wind Speed, Urban Morphology, and Rural Soil Moisture , 2002 .

[196]  Ekaterina Kourzeneva External data for lake parameterization in Numerical Weather Prediction and climate modeling , 2010 .

[197]  H. Douville,et al.  A new river flooding scheme for global climate applications: Off‐line evaluation over South America , 2008 .

[198]  Dean B. Gesch,et al.  New land surface digital elevation model covers the Earth , 1999 .

[199]  P. Formenti,et al.  Transport of dust particles from the Bodélé region to the monsoon layer – AMMA case study of the 9–14 June 2006 period , 2009 .

[200]  K. Suhre,et al.  ORILAM, a three‐moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso‐NH‐C model and validation on the Escompte campaign , 2005 .

[201]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[202]  F. Bouyssel,et al.  A comparison of two off‐line soil analysis schemes for assimilation of screen level observations , 2009 .

[203]  Eric F. Wood,et al.  The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures , 1998 .

[204]  Jean-Christophe Calvet,et al.  Use of agricultural statistics to verify the interannual variability in land surface models: a case study over France with ISBA-A-gs , 2011 .

[205]  Lars-Christer Lundin,et al.  Surface runoff and soil water percolation as affected by snow and soil frost , 1991 .

[206]  Florence Habets,et al.  On the utility of operational precipitation forecasts to served as input for streamflow forecasting , 2004 .

[207]  Hervé Giordani,et al.  Two‐way one‐dimensional high‐resolution air–sea coupled modelling applied to Mediterranean heavy rain events , 2009 .

[208]  Jean-Pierre Wigneron,et al.  An interactive vegetation SVAT model tested against data from six contrasting sites , 1998 .

[209]  R. Koster,et al.  Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR) , 2007 .

[210]  D. Kane,et al.  Water movement into seasonally frozen soils , 1983 .

[211]  A. J. Dolman,et al.  The Pilot Phase of the Global Soil Wetness Project , 1999 .

[212]  J. Noilhan,et al.  Regional-scale evaluation of a land surface scheme from atmospheric boundary layer observations , 2011 .

[213]  Zong-Liang Yang,et al.  Validation of the Snow Submodel of the Biosphere-Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data , 1997 .

[214]  G. Leeuw,et al.  Modeling coastal aerosol transport and effects of surf‐produced aerosols on processes in the marine atmospheric boundary layer , 2001 .

[215]  Patrick J. Bartlein,et al.  Simulation of lake evaporation with application to modeling lake level variations of Harney‐Malheur Lake, Oregon , 1990 .

[216]  Pierre Tulet,et al.  Description of the Mesoscale nonhydrostatic chemistry model and application to a transboundary pollution episode between northern France and southern England. , 2003 .

[217]  Zhao Ren-jun,et al.  The Xinanjiang model applied in China , 1992 .

[218]  Aaron Boone,et al.  The Influence of the Inclusion of Soil Freezing on Simulations by a Soil–Vegetation–Atmosphere Transfer Scheme , 2000 .

[219]  P. Wetzel,et al.  Concerning the Relationship between Evapotranspiration and Soil Moisture , 1987 .

[220]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[221]  P. Moigne,et al.  Coupling of the FLake model to the Surfex externalized surface model , 2010 .

[222]  Etienne Leblois,et al.  The SAFRAN‐ISBA‐MODCOU hydrometeorological model applied over France , 2008 .

[223]  Jean-Louis Roujean,et al.  ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models , 2012 .

[224]  J. Mahfouf,et al.  Combined assimilation of screen‐level observations and radar‐derived precipitation for soil moisture analysis , 2011 .

[225]  R. Koster,et al.  The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An Overview , 2002 .

[226]  Philippe Ciais,et al.  Modelling forest management within a global vegetation model—Part 1: Model structure and general behaviour , 2010 .

[227]  Yves Lejeune,et al.  A comparison of 1701 snow models using observations from an alpine site , 2013 .

[228]  V. Masson,et al.  Improvement of the hydrological component of an urban soil–vegetation–atmosphere–transfer model , 2007 .

[229]  I. Strachan,et al.  Modeling the surface energy budget during the thawing period of the 2006 Montreal Urban Snow Experiment , 2010 .

[230]  Jean-François Mahfouf,et al.  Analysis of Soil Moisture from Near-Surface Parameters: A Feasibility Study , 1991 .

[231]  P. Mestayer,et al.  Parameterization of the Urban Energy Budget with the Submesoscale Soil Model , 2006 .

[232]  Bertrand Decharme,et al.  A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges , 2012 .

[233]  Zong-Liang Yang,et al.  Validation of the energy budget of an alpine snowpack simulated by several snow models (Snow MIP project) , 2004, Annals of Glaciology.