Some Linear-Time Algorithms for Systolic Arrays

We survey some results on linear-time algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two n-bit binary numbers. We show how n * n Toeplitz systems of linear equations can be solved in time O(n) on a linear array of O(n) cells, each of which has constant memory size (independent of n). Finally, we outline how a two-dimensional square array of O(n)* O(n) cells can be used to solve (to working accuracy) the eigenvalue problem for a symmetric real n* n matrix in time O(nS(n)). Here S(n) is a slowly growing function of n; for practical purposes S(n) can be regarded as a constant. In addition to their theoretical interest, these results have potential applications in the areas of error-correcting codes, symbolic and algebraic computations, signal processing and image processing.

[1]  H. T. Kung,et al.  The Design of Special-Purpose VLSI Chips , 1980, Computer.

[2]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[3]  Stephen N. Cole Real-Time Computation by n-Dimensional Iterative Arrays of Finite-State Machines , 1969, IEEE Trans. Computers.

[4]  Franklin T. Luk,et al.  A Systolic Architecture for Almost Linear-Time Solution of the Symmetric Eigenvalue Problem , 1982 .

[5]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[6]  George Cybenko,et al.  The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations , 1980 .

[7]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[8]  Shalhav Zohar,et al.  Toeplitz Matrix Inversion: The Algorithm of W. F. Trench , 1969, JACM.

[9]  Richard P. Brent Analysis of the binary Euclidean algorithm , 1976, SIGS.

[10]  Jean-Marc Delosme,et al.  Highly concurrent computing structures for matrix arithmetic and signal processing , 1982, Computer.

[11]  Franklin T. Luk,et al.  Computation Of The Generalized Singular Value Decomposition Using Mesh-Connected Processors , 1983, Optics & Photonics.

[12]  H. T. Kung Why systolic architectures? , 1982, Computer.

[13]  Franklin T. Luk,et al.  A Systolic Array for the Linear-Time Solution of Toeplitz Systems of Equations , 1982 .

[14]  R. Brent,et al.  Computation of the Singular Value Decomposition Using Mesh-Connected Processors , 1983 .

[15]  C. Jacobi Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .

[16]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[17]  Daniel P. Siewiorek,et al.  A survey of highly parallel computing , 1982, Computer.

[18]  Robert Schreiber,et al.  A Systolic Architecture for Singular Value Decomposition , 1983 .

[19]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[20]  Lawrence Snyder,et al.  Introduction to the configurable, highly parallel computer , 1982, Computer.

[21]  H. T. Kung,et al.  Systolic (VLSI) arrays for relational database operations , 1980, SIGMOD '80.

[22]  M. Shensa,et al.  Remarks on a displacement-rank inversion method for Toeplitz systems , 1982 .

[23]  A. Sameh On Jacobi and Jacobi-I ike Algorithms for a Parallel Computer , 2010 .

[24]  Alston S. Householder,et al.  Handbook for Automatic Computation , 1960, Comput. J..

[25]  Charles E. Leiserson,et al.  Area-Efficient VLSI Computation , 1983 .

[26]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[27]  H. T. Kung The Structure of Parallel Algorithms , 1980, Adv. Comput..

[28]  E. Bareiss Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices , 1969 .

[29]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[30]  C. Jacobi,et al.  C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .

[31]  Martin Morf,et al.  Doubling algorithms for Toeplitz and related equations , 1980, ICASSP.

[32]  H. T. Kung,et al.  A Systolic 2-D Convolution Chip. , 1981 .

[33]  H. T. Kung,et al.  Numerically Stable Solution of Dense Systems of Linear Equations Using Mesh-Connected Processors , 1984 .

[34]  J. J. Symanski,et al.  Progress On A Systolic Processor Implementation , 1982, Other Conferences.

[35]  H. T. Kung VLSI Systems and Computations , 1982 .

[36]  H. T. Kung,et al.  Matrix Triangularization By Systolic Arrays , 1982, Optics & Photonics.

[37]  J. H. Wilkinson Note on the quadratic convergence of the cyclic Jacobi process , 1962 .

[38]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[39]  N. Wiener The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .

[40]  G. Forsythe,et al.  The cyclic Jacobi method for computing the principal values of a complex matrix , 1960 .

[41]  J. G. Nash,et al.  Concurrent VLSI (Very Large Scale Integration) Architectures for Two Dimensional Signal Processing Systems , 1983 .

[42]  Franklin T. Luk,et al.  Computing the Cholesky Factorization Using a Systolic Architecture , 1982 .

[43]  Eldon R. Hansen,et al.  On Cyclic Jacobi Methods , 1963 .

[44]  Bernard Chazelle Computational Geometry on a Systolic Chip , 1984, IEEE Transactions on Computers.

[45]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[46]  H. T. Kung,et al.  Systolic VLSI Arrays for Polynomial GCD Computation , 1984, IEEE Transactions on Computers.

[47]  H. T. Kung,et al.  Systolic Arrays for (VLSI). , 1978 .

[48]  Herman H. Goldstine,et al.  The Jacobi Method for Real Symmetric Matrices , 1959, JACM.

[49]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[50]  R. Brent,et al.  The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays , 1985 .

[51]  P. Eberlein,et al.  Solution to the Eigenproblem by a norm reducing Jacobi type method , 1968 .