Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

Abstract. Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s−1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

[1]  G. Vane,et al.  Spectroscopic Measurement Of Atmospheric Water Vapor And Schemes For Determination Of Evaporation From Land And Water Surfacea Using The Airborne Visible/infrared Imaging Spectrometer (aviris) , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[2]  Carol J. Bruegge,et al.  In-situ atmospheric water-vapor retrieval in support of AVIRIS validation , 1990, Other Conferences.

[3]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[4]  A. Goetz,et al.  Cirrus cloud detection from airborne imaging spectrometer data using the 1 , 1993 .

[5]  G. Brasseur,et al.  IMAGES: A three‐dimensional chemical transport model of the global troposphere , 1995 .

[6]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[7]  C. Clerbaux,et al.  Remote sensing of CO, CH4, and O3 using a spaceborne nadir-viewing interferometer , 1998 .

[8]  R. Green,et al.  Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum. , 1998, Applied optics.

[9]  H Edner,et al.  Real-time gas-correlation imaging employing thermal background radiation. , 2000, Optics express.

[10]  James Theiler,et al.  Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  Susan L. Ustin,et al.  Hyperspectral remote sensing for invasive species detection and mapping , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[12]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[13]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[14]  Daniel Schlaepfer,et al.  Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data , 2002, SPIE Optics + Photonics.

[15]  Marco Matricardi,et al.  RTIASI-4 : a new version of the ECMWF fast radiative transfer model for the infrared atmospheric sounding interferometer , 2003 .

[16]  Stephen E. Dunagan,et al.  Demonstrating UAV-acquired real-time thermal data over fires , 2003 .

[17]  J. R. Jensen,et al.  AVIRIS Measurements of Chlorophyll, Suspended Minerals, Dissolved Organic Carbon, and Turbidity in the Neuse River, North Carolina , 2004 .

[18]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[19]  Ulrich Platt,et al.  Iterative maximum a posteriori ( IMAP )-DOAS for retrieval of strongly absorbing trace gases : Model studies for CH 4 and CO 2 retrieval from near infrared spectra of SCIAMACHY onboard , 2005 .

[20]  A. Fraser,et al.  Characterizing non-Gaussian clutter and detecting weak gaseous plumes in hyperspectral imagery , 2005 .

[21]  Stephen G. Ungar,et al.  A Space-Based Sensor Web for Disaster Management , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[22]  D. Roberts,et al.  Daytime fire detection using airborne hyperspectral data , 2009 .

[23]  R. Clark,et al.  Reflectance spectroscopy of organic compounds: 1. Alkanes , 2009 .

[24]  Samantha J. Lavender,et al.  Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: a Review of Methods for Visible and Near-Infrared Wavelengths , 2009, Remote. Sens..

[25]  Nasser M. Nasrabadi,et al.  Automated Hyperspectral Cueing for Civilian Search and Rescue , 2009, Proceedings of the IEEE.

[26]  Dimitris G. Manolakis,et al.  Hyperspectral detection algorithms: use covariances or subspaces? , 2009, Optical Engineering + Applications.

[27]  K. Rosenlof,et al.  In Situ and Lidar Observations of Tropopause Subvisible Cirrus Clouds During TC4 , 2010 .

[28]  Michael Buchwitz,et al.  MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis , 2010 .

[29]  U. Platt,et al.  Early in-flight detection of SO 2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes , 2010 .

[30]  Raymond F. Kokaly,et al.  A method for quantitative mapping of thick oil spills using imaging spectroscopy , 2010 .

[31]  Jack S. Margolis,et al.  Mapping methane emissions from a marine geological seep source using imaging spectrometry , 2010 .

[32]  Ira Leifer,et al.  Detection of marine methane emissions with AVIRIS band ratios , 2011 .

[33]  R. Green,et al.  Imaging spectrometer science measurements for Terrestrial Ecology: AVIRIS and new developments , 2011, 2011 Aerospace Conference.

[34]  Collection, Storage and Real-Time Transmission of Housekeeping and Instrument Data Aboard Manned NASA Airborne Science Platforms , 2011 .

[35]  The NASA Airborne Science Data And Telemetry System (NASDAT) , 2011 .

[36]  M. Buchwitz,et al.  MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates , 2011 .

[37]  Francis Y. Enomoto,et al.  The Ikhana unmanned airborne system (UAS) western states fire imaging missions: from concept to reality (2006–2010) , 2011 .

[38]  Fred A. Kruse,et al.  Analysis of Imaging Spectrometer Data Using $N$ -Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Dominik Brunner,et al.  High-resolution NO₂ remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer , 2012 .

[40]  Dimitris G. Manolakis,et al.  Hyperspectral matched filter with false-alarm mitigation , 2012 .

[41]  Cathleen E. Jones,et al.  State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill , 2012 .

[42]  Christoph Kern,et al.  On the absolute calibration of SO 2 cameras , 2012 .

[43]  R. Harig,et al.  Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 1: Slant-columns and their ratios , 2012 .

[44]  Shannon T. Brown,et al.  NASA's Genesis and Rapid Intensification Processes (GRIP) Field Experiment , 2012 .

[45]  R. Harig,et al.  Volcanic SO 2 and SiF 4 visualization using 2-D thermal emission spectroscopy – Part 2: Wind propagation and emission rates , 2012 .

[46]  Michael Buchwitz,et al.  Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data , 2012 .

[47]  F. Kruse Mapping surface mineralogy using imaging spectrometry , 2012 .

[48]  David R. Thompson,et al.  Autonomous Spectral Discovery and Mapping Onboard the EO-1 Spacecraft , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Ira Leifer,et al.  High resolution mapping of methane emissions from marine and terrestrial sources using a Cluster-Tuned Matched Filter technique and imaging spectrometry , 2013 .

[50]  Robert O. Green,et al.  High spatial resolution mapping of elevated atmospheric carbon dioxide using airborne imaging spectroscopy: Radiative transfer modeling and power plant plume detection , 2013 .

[51]  D. Thompson,et al.  Airborne imaging spectroscopy to monitor urban mosquito microhabitats , 2013 .

[52]  V. M. Devi,et al.  Methane line parameters in the HITRAN2012 database , 2013 .

[53]  Ira Leifer,et al.  Mobile Monitoring of Methane Leakage , 2014 .

[54]  C. Frankenberg,et al.  Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: application to AVIRIS , 2014 .

[55]  Remote sensing of large scale methane emission sources with the Methane Airborne MAPper (MAMAP) instrument over the Kern River and Kern Front Oil fields and validation through airborne in-situ measurements - Initial results from COMEX , 2014 .

[56]  Nazeeh Aranki,et al.  Airborne demonstration of FPGA implementation of Fast Lossless hyperspectral data compression system , 2014, 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).

[57]  Eric Truslow,et al.  Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms , 2014, IEEE Signal Processing Magazine.

[58]  David R. Thompson,et al.  Rapid Spectral Cloud Screening Onboard Aircraft and Spacecraft , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[59]  A. Thorpe Mapping methane concentrations from a controlled release experiment using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) , 2014 .

[60]  Sarah C. Carlisle,et al.  Multispectral, hyperspectral, and LiDAR remote sensing and geographic information fusion for improved earthquake response , 2014, Defense + Security Symposium.

[61]  Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications , 2015 .

[62]  David R. Thompson,et al.  Real-Time Atmospheric Correction of AVIRIS-NG Imagery , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[63]  H. Bovensmann,et al.  Real-time remote detection and measurement , 2015 .

[64]  Atmospheric remote sensing constraints on direct sea-air methane flux from the 22/4b North Sea massive blowout bubble plume , 2015 .

[65]  Glenn Rolph,et al.  Real-time Environmental Applications and Display sYstem: READY , 2017, Environ. Model. Softw..