Gem- And Co-Gem-Free Graphs Have Bounded Clique-Width
暂无分享,去创建一个
[1] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.
[2] J. Shearer. A Class of Perfect Graphs , 1982 .
[3] Feodor F. Dragan,et al. New Graph Classes of Bounded Clique-Width , 2002, Theory of Computing Systems.
[4] Udi Rotics,et al. On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..
[5] Derek G. Corneil,et al. Complement reducible graphs , 1981, Discret. Appl. Math..
[6] Gottfried Tinhofer,et al. Strong tree-cographs are birkhoff graphs , 1989, Discret. Appl. Math..
[7] Jeremy P. Spinrad,et al. Modular decomposition and transitive orientation , 1999, Discret. Math..
[8] Egon Wanke,et al. k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..
[9] Stephan Olariu,et al. On the p-connectedness of Graphs - A Survey , 1999, Discret. Appl. Math..
[10] Russell Merris,et al. Split graphs , 2003, Eur. J. Comb..
[11] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[12] Zsolt Tuza,et al. A characterization of graphs without long induced paths , 1990, J. Graph Theory.
[13] Lorna Stewart,et al. A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..
[14] Bruno Courcelle,et al. Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..
[15] S. E. Markosyan,et al. ω-Perfect graphs , 1990 .
[16] Dominique de Werra,et al. Four classes of perfectly orderable graphs , 1987, J. Graph Theory.
[17] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[18] Andreas Brandstädt,et al. Chordal co-gem-free and (P5, gem)-free graphs have bounded clique-width , 2005, Discret. Appl. Math..
[19] Michel Habib,et al. A New Linear Algorithm for Modular Decomposition , 1994, CAAP.
[20] Bruce A. Reed,et al. Some classes of perfectly orderable graphs , 1989, J. Graph Theory.
[21] B. Reed,et al. Polynomial Time Recognition of Clique-Width ≤ 3 Graphs , 2000 .
[22] Frederic Maire,et al. On graphs without P5 and P5_ , 1995, Discret. Math..
[23] Celina M. H. de Figueiredo,et al. A class of ?-perfect graphs , 2000, Discret. Math..
[24] Vassilis Giakoumakis,et al. P_4-laden Graphs: A New Class of Brittle Graphs , 1996, Inf. Process. Lett..