The eggplant AG91-25 recognizes the Type III-secreted effector RipAX2 to trigger resistance to bacterial wilt (Ralstonia solanacearum species complex).

To deploy durable plant resistance, we must understand its underlying molecular mechanisms. Type III effectors (T3Es) and their recognition play a central role in the interaction between bacterial pathogens and crops. We demonstrate that the Ralstonia solanacearum species complex (RSSC) T3E ripAX2 triggers specific resistance in eggplant AG91-25, which carries the major resistance locus EBWR9. The eggplant accession AG91-25 is resistant to the wild-type R. pseudosolanacearum strain GMI1000, whereas a ripAX2 defective mutant of this strain can cause wilt. Notably, the addition of ripAX2 from GMI1000 to PSS4 suppresses wilt development, demonstrating that RipAX2 is an elicitor of AG91-25 resistance. RipAX2 has been shown previously to induce effector-triggered immunity (ETI) in the wild relative eggplant Solanum torvum, and its putative zinc (Zn)-binding motif (HELIH) is critical for ETI. We show that, in our model, the HELIH motif is not necessary for ETI on AG91-25 eggplant. The ripAX2 gene was present in 68.1% of 91 screened RSSC strains, but in only 31.1% of a 74-genome collection comprising R. solanacearum and R. syzygii strains. Overall, it is preferentially associated with R. pseudosolanacearum phylotype I. RipAX2GMI1000 appears to be the dominant allele, prevalent in both R. pseudosolanacearum and R. solanacearum, suggesting that the deployment of AG91-25 resistance could control efficiently bacterial wilt in the Asian, African and American tropics. This study advances the understanding of the interaction between RipAX2 and the resistance genes at the EBWR9 locus, and paves the way for both functional genetics and evolutionary analyses.

[1]  S. Genin,et al.  HpaB-Dependent Secretion of Type III Effectors in the Plant Pathogens Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria , 2017, Scientific Reports.

[2]  Sylvia Salgon Déterminisme génétique de la résistance au flétrissement bactérien chez l'aubergine et applications en sélection variétale , 2017 .

[3]  M. Daunay,et al.  Eggplant Resistance to the Ralstonia solanacearum Species Complex Involves Both Broad-Spectrum and Strain-Specific Quantitative Trait Loci , 2017, Front. Plant Sci..

[4]  R. Storey,et al.  A novel hairpin library-based approach to identify NBS–LRR genes required for effector-triggered hypersensitive response in Nicotiana benthamiana , 2017, Plant Methods.

[5]  D. Büttner Behind the lines–actions of bacterial type III effector proteins in plant cells , 2016, FEMS microbiology reviews.

[6]  M. Anisimova,et al.  Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum. , 2016, Molecular plant pathology.

[7]  B. Vinatzer,et al.  Draft Genome Sequences of Nine Strains of Ralstonia solanacearum Differing in Virulence to Eggplant (Solanum melongena) , 2016, Genome Announcements.

[8]  F. Chiroleu,et al.  Towards the Identification of Type III Effectors Associated with Ralstonia solanacearum Virulence on Tomato and Eggplant. , 2015, Phytopathology.

[9]  C. Henry,et al.  Comparative Secretome Analysis of Ralstonia solanacearum Type 3 Secretion-Associated Mutants Reveals a Fine Control of Effector Delivery, Essential for Bacterial Pathogenicity* , 2015, Molecular & Cellular Proteomics.

[10]  H. Yoshioka,et al.  A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of Transcription Factors to Immunity , 2015, Cell.

[11]  Christopher R. Clarke,et al.  Genome-Enabled Phylogeographic Investigation of the Quarantine Pathogen Ralstonia solanacearum Race 3 Biovar 2 and Screening for Sources of Resistance Against Its Core Effectors. , 2015, Phytopathology.

[12]  C. Allen,et al.  Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity , 2015, BMC Genomics.

[13]  Lei Jianjun,et al.  Functional Characterization of a Putative Bacterial Wilt Resistance Gene (RE-bw) in Eggplant , 2015, Plant Molecular Biology Reporter.

[14]  P. de Vos,et al.  Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia , 2014, International journal of systematic and evolutionary microbiology.

[15]  S. Genin,et al.  HpaP modulates type III effector secretion in Ralstonia solanacearum and harbours a substrate specificity switch domain essential for virulence. , 2014, Molecular plant pathology.

[16]  L. Deslandes,et al.  Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. , 2014, Current opinion in plant biology.

[17]  T. Mukaihara,et al.  Ralstonia solanacearum type III secretion system effector Rip36 induces a hypersensitive response in the nonhost wild eggplant Solanum torvum. , 2014, Molecular plant pathology.

[18]  R. Oliver,et al.  Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. , 2014, Molecular plant-microbe interactions : MPMI.

[19]  A. Bellec,et al.  MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. , 2013, The New phytologist.

[20]  H. Leung,et al.  Plant-pathogen interactions: disease resistance in modern agriculture. , 2013, Trends in genetics : TIG.

[21]  Carine Aya N'Guessan Phylogénie, structure génétique et diversité de virulence de Ralstonia solanacearum Yabucchi et al. (1995),[Burkhoderiacées], agent du flétrissement bactérien en Côte d'Ivoire , 2013 .

[22]  J. Aubertot,et al.  Genome Structure and Reproductive Behaviour Influence the Evolutionary Potential of a Fungal Phytopathogen , 2012, PLoS pathogens.

[23]  A. Frary,et al.  Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant , 2012, Theoretical and Applied Genetics.

[24]  F. Chiroleu,et al.  So near and yet so far: the specific case of Ralstonia Solanacearum populations from Côte d'Ivoire in Africa. , 2012, Phytopathology.

[25]  Yunbo Luo,et al.  Virus-induced gene silencing in eggplant (Solanum melongena). , 2012, Journal of integrative plant biology.

[26]  Jean-Charles de Cambiaire,et al.  Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA , 2011, The ISME Journal.

[27]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[28]  A chromosomal insertion toolbox for promoter probing, mutant complementation, and pathogenicity studies in Ralstonia solanacearum. , 2012, Molecular plant-microbe interactions : MPMI.

[29]  A. Palloix,et al.  Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. , 2011, Phytopathology.

[30]  Aurore Lebeau Résistance de la tomate, l'aubergine et le piment à Ralstonia solanacearum : interactions entre les géniteurs de résistance et la diversité bactérienne, caractérisation et cartographie des facteurs génétiques impliqués chez l'aubergine , 2010 .

[31]  Y. Marco,et al.  Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis , 2010, PLoS pathogens.

[32]  Claudine Médigue,et al.  Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence , 2010, BMC Genomics.

[33]  Chandra Verma,et al.  Differences in the transactivation domains of p53 family members: a computational study , 2010, BMC Genomics.

[34]  A new lineage sheds light on the evolutionary history of Potato virus Y. , 2010, Molecular plant pathology.

[35]  A. Palloix,et al.  Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. , 2009, The New phytologist.

[36]  A. Jauneau,et al.  Dissection of Bacterial Wilt on Medicago truncatula Revealed Two Type III Secretion System Effectors Acting on Root Infection Process and Disease Development[C][W][OA] , 2009, Plant Physiology.

[37]  S. Tanksley,et al.  A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers , 2009, Theoretical and Applied Genetics.

[38]  E. Stukenbrock,et al.  The origins of plant pathogens in agro-ecosystems. , 2008, Annual review of phytopathology.

[39]  Y. Marco,et al.  RD19, an Arabidopsis Cysteine Protease Required for RRS1-R–Mediated Resistance, Is Relocalized to the Nucleus by the Ralstonia solanacearum PopP2 Effector[W] , 2008, The Plant Cell Online.

[40]  Elodie Sartorel,et al.  Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. , 2007, Molecular plant-microbe interactions : MPMI.

[41]  T. Denny Plant pathogenic Ralstonia species , 2007 .

[42]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[43]  J. Montarry,et al.  Does selection by resistant hosts trigger local adaptation in plant–pathogen systems? , 2006, Journal of evolutionary biology.

[44]  C. Allen,et al.  How complex is the Ralstonia solanacearum species complex , 2005 .

[45]  C. Boucher,et al.  Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system , 2004, Molecular microbiology.

[46]  S. Tanksley,et al.  Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). , 2002, Genome.

[47]  J. Beynon,et al.  Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Weissenbach,et al.  Genome sequence of the plant pathogen Ralstonia solanacearum , 2002, Nature.

[49]  B. McDonald,et al.  Pathogen population genetics, evolutionary potential, and durable resistance. , 2002, Annual review of phytopathology.

[50]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[51]  G. Hartman,et al.  The hosts of Pseudomonas solanacearum. , 1994 .

[52]  P. Prior,et al.  A new source of resistance to bacterial wilt of eggplants obtained from a cross: Solanum aethiopicum L × Solanum melongena L , 1991 .

[53]  A. Hayward Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. , 1991, Annual review of phytopathology.

[54]  S. Kiyosawa Genetics and Epidemiological Modeling of Breakdown of Plant Disease Resistance , 1982 .