Deep Kernel Density Estimation for Photon Mapping

Recently, deep learning‐based denoising approaches have led to dramatic improvements in low sample‐count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high‐quality reconstructions. In this paper, we develop the first deep learning‐based method for particle‐based rendering, and specifically focus on photon density estimation, the core of all particle‐based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per‐photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per‐photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high‐quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods. Our approach largely reduces the required number of photons, significantly advancing the computational efficiency in photon mapping.

[1]  Rui Wang,et al.  Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation , 2019, ACM Trans. Graph..

[2]  Donald P. Greenberg,et al.  Global illumination using local linear density estimation , 1997, TOGS.

[3]  Xiangxu Meng,et al.  Adaptive Photon Mapping Based on Gradient , 2016, Journal of Computer Science and Technology.

[4]  Eric P. Lafortune,et al.  Monte Carlo light tracing with direct computation of pixel intensities , 1993 .

[5]  T KajiyaJames The rendering equation , 1986 .

[6]  Anton Kaplanyan,et al.  Adaptive progressive photon mapping , 2013, TOGS.

[7]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[8]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[9]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[10]  Ravi Ramamoorthi,et al.  Deep high dynamic range imaging of dynamic scenes , 2017, ACM Trans. Graph..

[11]  Jaakko Lehtinen,et al.  Sample-based Monte Carlo denoising using a kernel-splatting network , 2019, ACM Trans. Graph..

[12]  Niels Jørgen Christensen,et al.  Photon maps in bidirectional Monte Carlo ray tracing of complex objects , 1995, Comput. Graph..

[13]  R. Ramamoorthi,et al.  Adaptive wavelet rendering , 2009, SIGGRAPH 2009.

[14]  Justin Talbot,et al.  Energy redistribution path tracing , 2005, ACM Trans. Graph..

[15]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[16]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[17]  Jon Sporring,et al.  Diffusion Based Photon Mapping , 2008, Comput. Graph. Forum.

[18]  Ben Spencer,et al.  Photon Parameterisation for Robust Relaxation Constraints , 2013, Comput. Graph. Forum.

[19]  Ben Spencer,et al.  Progressive photon relaxation , 2013, ACM Trans. Graph..

[20]  Jaakko Lehtinen,et al.  Deep convolutional reconstruction for gradient-domain rendering , 2019, ACM Trans. Graph..

[21]  Ben Spencer,et al.  Into the Blue: Better Caustics through Photon Relaxation , 2009, Comput. Graph. Forum.

[22]  Ravi Ramamoorthi,et al.  Multiple Axis‐Aligned Filters for Rendering of Combined Distribution Effects , 2017, Comput. Graph. Forum.

[23]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[24]  Mark Meyer,et al.  Kernel-predicting convolutional networks for denoising Monte Carlo renderings , 2017, ACM Trans. Graph..

[25]  Matthias Zwicker,et al.  Robust Denoising using Feature and Color Information , 2013, Comput. Graph. Forum.

[26]  H. Jensen,et al.  Progressive photon mapping , 2008, SIGGRAPH 2008.

[27]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[28]  Mark Meyer,et al.  Denoising with kernel prediction and asymmetric loss functions , 2018, ACM Trans. Graph..

[29]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[30]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Toshiya Hachisuka,et al.  Stochastic progressive photon mapping , 2009, ACM Trans. Graph..

[32]  Matthias Zwicker,et al.  Progressive photon mapping: A probabilistic approach , 2011, TOGS.

[33]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[34]  Timo Aila,et al.  Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder , 2017, ACM Trans. Graph..

[35]  Wenzel Jakob,et al.  Progressive Expectation‐Maximization for Hierarchical Volumetric Photon Mapping , 2011, EGSR '11.

[36]  Kenny Erleben,et al.  Photon differentials , 2007, GRAPHITE '07.

[37]  Kun Zhou,et al.  Irradiance regression for efficient final gathering in global illumination , 2014, Frontiers of Computer Science.

[38]  Jaakko Lehtinen,et al.  Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering , 2015, Comput. Graph. Forum.

[39]  Kalyan Sunkavalli,et al.  Deep image-based relighting from optimal sparse samples , 2018, ACM Trans. Graph..

[40]  Kalyan Sunkavalli,et al.  Deep view synthesis from sparse photometric images , 2019, ACM Trans. Graph..

[41]  Toshiya Hachisuka,et al.  A progressive error estimation framework for photon density estimation , 2010, ACM Trans. Graph..

[42]  Frédo Durand,et al.  Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects , 2015, ACM Trans. Graph..

[43]  Pradeep Sen,et al.  A machine learning approach for filtering Monte Carlo noise , 2015, ACM Trans. Graph..

[44]  Frédo Durand,et al.  Frequency analysis and sheared reconstruction for rendering motion blur , 2009, ACM Trans. Graph..

[45]  Toshiya Hachisuka,et al.  Robust adaptive photon tracing using photon path visibility , 2011, TOGS.

[46]  Philipp Slusallek,et al.  Bidirectional light transport with vertex merging , 2011, SA '11.

[47]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[48]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[49]  J. Vorba Bidirectional Photon Mapping , 2011 .