A new modeling approach of MIMO linear systems using the generalized orthonormal basis functions

In this paper we propose a new modeling technique for LTI multivariable systems using the generalized Orthonormal basis functions with ordinary poles. Once the model structure is built we proceed to update the membership set of the resulting model parameters through the execution of unknown but bounded error identification algorithms. This updating aims to synthesize a robust control strategy.

[1]  B. Wahlberg System identification using Laguerre models , 1991 .

[2]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[3]  B. Ninness,et al.  MIMO system identification using orthonormal basis functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[4]  B. Ninness,et al.  Asymptotic Analysis of MIMO System Estimates by the Use of Orthonormal Bases , 1996 .

[5]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[6]  Zoltán Szabó,et al.  Minimal partial realization from generalized orthonormal basis function expansions , 2002, Autom..

[7]  Håkan Hjalmarsson,et al.  The fundamental role of general orthonormal bases in system identification , 1999, IEEE Trans. Autom. Control..

[8]  Gérard Favier,et al.  Review and Comparison of Ellipsoidal Bounding Algorithms , 1996 .

[9]  Gérard Favier,et al.  Recursive Determination of Parameter Uncertainty Intervals for Linear Models with Unknown But Bounded Errors , 1994 .

[10]  Jong-Il Bae,et al.  System identification using generalized orthonormal basis , 2005, International Symposium on Optomechatronic Technologies.

[11]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[12]  P. V. D. Hof,et al.  System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.