A new modeling approach of MIMO linear systems using the generalized orthonormal basis functions
暂无分享,去创建一个
[1] B. Wahlberg. System identification using Laguerre models , 1991 .
[2] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[3] B. Ninness,et al. MIMO system identification using orthonormal basis functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[4] B. Ninness,et al. Asymptotic Analysis of MIMO System Estimates by the Use of Orthonormal Bases , 1996 .
[5] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[6] Zoltán Szabó,et al. Minimal partial realization from generalized orthonormal basis function expansions , 2002, Autom..
[7] Håkan Hjalmarsson,et al. The fundamental role of general orthonormal bases in system identification , 1999, IEEE Trans. Autom. Control..
[8] Gérard Favier,et al. Review and Comparison of Ellipsoidal Bounding Algorithms , 1996 .
[9] Gérard Favier,et al. Recursive Determination of Parameter Uncertainty Intervals for Linear Models with Unknown But Bounded Errors , 1994 .
[10] Jong-Il Bae,et al. System identification using generalized orthonormal basis , 2005, International Symposium on Optomechatronic Technologies.
[11] A. Vicino,et al. Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..
[12] P. V. D. Hof,et al. System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.