Decoding of Convolutional Codes

This chapter reviews general descriptions and analyses of important decoding algorithms for convolutional codes. The Viterbi algorithm that outputs the codeword maximizing the probability of the received sequence conditioned on the information sequence is analyzed. It has been shown that the Viterbi algorithm is an efficient decoding method, particularly when the advantage of soft decisions is fully exploited. The path weight enumerators and the extended path enumerators obtained from the state-transition diagram of the convolutional encoder are used to derive tight upper bounds on the decoding error probabilities for both hard and soft decisions. A Markovian technique is described for an exact calculation of the bit error probability for the Viterbi algorithm. The chapter considers an a posteriori probability (APP) decoding algorithm, and highlights that this symbol decoding algorithm outputs the a posteriori probability for each of the transmitted information symbols.

[1]  Jérôme Lacan,et al.  Systematic MDS erasure codes based on Vandermonde matrices , 2004, IEEE Communications Letters.

[2]  Marvin A. Epstein,et al.  Algebraic decoding for a binary erasure channel , 1958 .

[3]  R. Gallager Information Theory and Reliable Communication , 1968 .

[4]  Joachim Rosenthal,et al.  On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[5]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[6]  Joachim Rosenthal,et al.  Decoding of MDP convolutional codes over the erasure channel , 2009, 2009 IEEE International Symposium on Information Theory.

[7]  Masayuki Arai,et al.  Analysis of using convolutional codes to recover packet losses over burst erasure channels , 2001, Proceedings 2001 Pacific Rim International Symposium on Dependable Computing.

[8]  Heide Gluesing-Luerssen,et al.  A matrix ring description for cyclic convolutional codes , 2008, Adv. Math. Commun..

[9]  Ryan Hutchinson The Existence of Strongly MDS Convolutional Codes , 2008, SIAM J. Control. Optim..

[10]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[11]  Vern Paxson,et al.  End-to-end Internet packet dynamics , 1997, SIGCOMM '97.

[12]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[13]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[14]  Gerzson Kéri Types of superregular matrices and the number of n‐arcs and complete n‐arcs in PG (r, q) , 2006 .

[15]  Dong-Joon Shin,et al.  On the multi-scale behavior of packet size distribution in Internet backbone network , 2008, NOMS 2008 - 2008 IEEE Network Operations and Management Symposium.

[16]  Jochen Trumpf,et al.  On superregular matrices and MDP convolutional codes , 2008 .

[17]  Amir K. Khandani,et al.  Coding over an erasure channel with a large alphabet size , 2008, 2008 IEEE International Symposium on Information Theory.

[18]  M. Hazewinkel Moduli and canonical forms for linear dynamical systems III : the algebraic-geometric case , 1977 .

[19]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[20]  Joachim Rosenthal,et al.  Connections between linear systems and convolutional codes , 2000, math/0005281.