Spectro-angular light scattering measurements of individual microscopic objects.

The spectro-angular light scattering measurements of individual microscopic objects are presented. Using spectroscopic quantitative phase microscopy and Fourier transform light scattering, the 2D angle-resolved light scattering intensity and phase patterns are measured in a spectral range of 450-750 nm and an angular range of -70-70°. The spectro-angular light scattering measurements of individual polystyrene beads are demonstrated with high sensitivity and precision.

[1]  YoungJu Jo,et al.  Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications , 2013, Sensors.

[2]  Huafeng Ding,et al.  Actin-driven cell dynamics probed by Fourier transform light scattering , 2010, Biomedical optics express.

[3]  Jaeduck Jang,et al.  Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. , 2012, Optics express.

[4]  Thomas Rothe,et al.  Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy , 2012, Journal of biomedical optics.

[5]  YongKeun Park,et al.  Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells , 2009, BiOS.

[6]  Vadim Backman,et al.  Microscopic imaging and spectroscopy with scattered light. , 2010, Annual review of biomedical engineering.

[7]  Wei Lu,et al.  Using Elastic Light Scattering of Red Blood Cells to Detect Infection of Malaria Parasite , 2012, IEEE Transactions on Biomedical Engineering.

[8]  T. Foster,et al.  Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy. , 2007, Optics letters.

[9]  Yongkeun Park,et al.  Ultraviolet refractometry using field-based light scattering spectroscopy. , 2009, Optics express.

[10]  Gabriel Popescu,et al.  Light scattering of human red blood cells during metabolic remodeling of the membrane. , 2011, Journal of biomedical optics.

[11]  Risto Myllylä,et al.  Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level , 2011, Biomedical optics express.

[12]  W. Tscharnuter Mobility measurements by phase analysis. , 2001, Applied optics.

[13]  D. Sampson,et al.  Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy , 2006 .

[14]  Zhuo Wang,et al.  Fourier Transform Light Scattering of Biological Structure and Dynamics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  YongKeun Park,et al.  Real-time quantitative phase imaging with a spatial phase-shifting algorithm. , 2011, Optics letters.

[16]  Kamran Badizadegan,et al.  Field-based angle-resolved light-scattering study of single live cells. , 2008, Optics letters.

[17]  Jaeduck Jang,et al.  Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. , 2013, Analytical chemistry.

[18]  Irving Itzkan,et al.  Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels , 2007, Proceedings of the National Academy of Sciences.

[19]  Francisco E. Robles,et al.  Molecular imaging true-colour spectroscopic optical coherence tomography. , 2011, Nature photonics.

[20]  Huafeng Ding,et al.  Optical properties of tissues quantified by Fourier-transform light scattering. , 2009, Optics letters.

[21]  Subra Suresh,et al.  Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. , 2012, Acta biomaterialia.

[22]  Andrew J Berger,et al.  Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells. , 2009, Applied optics.

[23]  Gabriel Popescu,et al.  Fresnel particle tracing in three dimensions using diffraction phase microscopy. , 2007, Optics letters.

[24]  Kyoohyun Kim,et al.  Synthetic Fourier transform light scattering. , 2013, Optics express.

[25]  YongKeun Park,et al.  Optical imaging techniques for the study of malaria. , 2012, Trends in biotechnology.

[26]  YongKeun Park,et al.  Fourier-transform light scattering of individual colloidal clusters. , 2012, Optics letters.

[27]  Donggeon Han,et al.  Random and V-groove texturing for efficient light trapping in organic photovoltaic cells , 2013 .

[28]  B. Javidi,et al.  Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms , 2012, IEEE Photonics Journal.

[29]  H. Pham,et al.  Spectroscopic diffraction phase microscopy. , 2012, Optics letters.

[30]  Vadim Backman,et al.  Elastic backscattering spectroscopic microscopy. , 2005, Optics letters.

[31]  D. Sampson,et al.  Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy. , 2005, Optics express.

[32]  Jaeduck Jang,et al.  Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix. , 2012, Optics express.

[33]  Francisco E. Robles,et al.  Optical Spectroscopy of Biological Cells , 2012 .

[34]  J. Schäfer,et al.  Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe , 2011 .

[35]  YongKeun Park,et al.  Fourier transform light scattering angular spectroscopy using digital inline holography. , 2012, Optics letters.

[36]  Zhuo Wang,et al.  Fourier transform light scattering of inhomogeneous and dynamic structures. , 2008, Physical review letters.