Reticular synthesis of porous molecular 1D nanotubes and 3D networks.

[1]  David H. Case,et al.  Convergence Properties of Crystal Structure Prediction by Quasi-Random Sampling , 2015, Journal of chemical theory and computation.

[2]  Xingxing Shen,et al.  Fine-Tuning of Crystal Packing and Charge Transport Properties of BDOPV Derivatives through Fluorine Substitution. , 2015, Journal of the American Chemical Society.

[3]  A. Jacobson,et al.  Cyclotetrabenzoin: Facile Synthesis of a Shape-Persistent Molecular Square and Its Assembly into Hydrogen-Bonded Nanotubes. , 2015, Chemistry.

[4]  S. Stupp,et al.  Supramolecular Packing Controls H2 Photocatalysis in Chromophore Amphiphile Hydrogels , 2015, Journal of the American Chemical Society.

[5]  Daoliang Wang,et al.  Robust Ordered Bundles of Porous Helical Nanotubes Assembled from Fully Rigid Ionic Benzene-1,3,5-tricarboxamides. , 2015, Chemistry.

[6]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[7]  A. Cooper,et al.  Trapping virtual pores by crystal retro-engineering , 2015, Nature Chemistry.

[8]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[9]  Severin T. Schneebeli,et al.  Assembly of supramolecular nanotubes from molecular triangles and 1,2-dihalohydrocarbons. , 2014, Journal of the American Chemical Society.

[10]  A. Cooper,et al.  Separation of rare gases and chiral molecules by selective binding in porous organic cages. , 2014, Nature materials.

[11]  Edward O. Pyzer-Knapp,et al.  Predicted crystal energy landscapes of porous organic cages , 2014 .

[12]  Iris M. Oppel,et al.  A permanent mesoporous organic cage with an exceptionally high surface area. , 2014, Angewandte Chemie.

[13]  Edward O. Pyzer-Knapp,et al.  Controlling the crystallization of porous organic cages: molecular analogs of isoreticular frameworks using shape-specific directing solvents. , 2014, Journal of the American Chemical Society.

[14]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[15]  Gautam R Desiraju,et al.  Crystal engineering: from molecule to crystal. , 2013, Journal of the American Chemical Society.

[16]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[17]  D. Unruh,et al.  Development of metal-organic nanotubes exhibiting low-temperature, reversible exchange of confined "ice channels". , 2013, Journal of the American Chemical Society.

[18]  F. Leusen,et al.  Towards ab initio screening of co-crystal formation through lattice energy calculations and crystal structure prediction of nicotinamide, isonicotinamide, picolinamide and paracetamol multi-component crystals , 2013 .

[19]  A. Cooper,et al.  Molecular shape sorting using molecular organic cages. , 2013, Nature chemistry.

[20]  Tanya K. Ronson,et al.  Metal-organic container molecules through subcomponent self-assembly. , 2013, Chemical communications.

[21]  Berk Geveci,et al.  Streaming and Out-of-Core Methods , 2012, High Performance Visualization.

[22]  Peter D. Frischmann,et al.  Sterically-limited self-assembly of Pt4 macrocycles into discrete non-covalent nanotubes: porous supramolecular tetramers and hexamers. , 2012, Chemistry.

[23]  Iris M. Oppel,et al.  Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. , 2012, Angewandte Chemie.

[24]  Iris M. Oppel,et al.  Periphery-substituted [4+6] salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties. , 2012, Chemistry.

[25]  A. Cooper,et al.  Porous organic cage nanocrystals by solution mixing. , 2012, Journal of the American Chemical Society.

[26]  A. Cooper,et al.  Modular and predictable assembly of porous organic molecular crystals , 2011, Nature.

[27]  Sarah L Price,et al.  Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. , 2010, Physical chemistry chemical physics : PCCP.

[28]  M. Mastalerz Shape-persistent organic cage compounds by dynamic covalent bond formation. , 2010, Angewandte Chemie.

[29]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[30]  G. Day,et al.  Predicting inclusion behaviour and framework structures in organic crystals. , 2009, Chemistry.

[31]  J. Marrot,et al.  Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. , 2009, Journal of the American Chemical Society.

[32]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[33]  P. Karamertzanis,et al.  Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? I. Comparison of Lattice Energies , 2009 .

[34]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[35]  C. Zheng,et al.  Shape-persistent macrocyclic aromatic tetrasulfonamides: Molecules with nanosized cavities and their nanotubular assemblies in solid state. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[37]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[38]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .

[39]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[40]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[41]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[42]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[43]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[44]  Kwang Soo Kim,et al.  Self-assembled arrays of organic nanotubes with infinitely long one-dimensional H-bond chains. , 2001, Journal of the American Chemical Society.

[45]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[46]  V. Laukhin,et al.  Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound , 2000, Nature.

[47]  J. Walton,et al.  Tetrahedron Report Number 541 Conceptual and Synthetic Strategies for the Preparation of Organic Magnets , 2000 .

[48]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[49]  S. Kitagawa,et al.  Three‐Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′‐bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn) , 1997 .

[50]  A. Jen,et al.  Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications , 1997, Nature.

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[53]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1993, Nature.

[54]  G. Whitesides,et al.  Solid-state structures of rosette and crinkled tape motifs derived from the cyanuric acid melamine lattice , 1992 .

[55]  James D. Wuest,et al.  Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers , 1991 .

[56]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[57]  Y. Ducharme,et al.  Use of hydrogen bonds to control molecular aggregation. Extensive, self-complementary arrays of donors and acceptors , 1988 .

[58]  R. Haddon,et al.  Design of organic metals and superconductors , 1975, Nature.

[59]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .