A general precursor strategy for one-dimensional titania with surface nanoprotrusion and tunable structural hierarchy

The design of one-dimensional titania with tunable structural hierarchy holds exciting implications for applications such as optoelectronics, sensing and catalysis. Here, we report a general precursor strategy for one-dimensional titania with surface nanoprotrusion and tunable hierarchical structures realized via a titanate route using electrospun titania fibers as precursors. One-dimensional hierarchical hollow titanate (1D-HHT) was first fabricated under mild alkaline hydrothermal conditions from electrospun amorphous TiO2 precursors. The time-dependent evolution of 1D-HHT has been investigated in detail. The concerted effect of alkaline etching and Ostwald ripening is responsible for the surface nanoprotrusion and modulation of structural hierarchy. Anatase TiO2 with the same hierarchical structures can be obtained using controlled calcination. The as-fabricated one-dimensional titania with varying levels of structural hierarchy exhibits about 1.3–1.5 times higher power conversion efficiency than commercial P25 as a photoanode material for dye-sensitized solar cells (DSSCs). The current work may be extended for more functional TiO2-based materials with tunable structural hierarchy and could widen the application range of electrospinning technology for one-dimensional hierarchical structures.

[1]  Ping Liu,et al.  Titania Tube-in-Tube Scaffolds with Multilength-Scale Structural Hierarchy and Structure-Enhanced Functional Performance , 2015 .

[2]  A. S. Nair,et al.  TiO2 nanofibers resembling 'yellow bristle grass' in morphology by a soft chemical transformation. , 2015, Dalton transactions.

[3]  X. Lou,et al.  Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage , 2015 .

[4]  Junpeng Wang,et al.  Template-free synthesis of mesoporous anatase titania hollow spheres and their enhanced photocatalysis , 2015 .

[5]  B. Erjavec,et al.  Effects of heat and peroxide treatment on photocatalytic activity of titanate nanotubes , 2015 .

[6]  G. De,et al.  Electrospun anatase TiO2 nanofibers with ordered mesoporosity , 2014 .

[7]  S. Ramakrishna,et al.  Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation , 2014 .

[8]  C. Xie,et al.  Mechanistic insights into formation of SnO₂ nanotubes: asynchronous decomposition of poly(vinylpyrrolidone) in electrospun fibers during calcining process. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[9]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[10]  Yoon-Kyoung Cho,et al.  Hierarchically structured suspended TiO2 nanofibers for use in UV and pH sensor devices. , 2014, ACS applied materials & interfaces.

[11]  S. Ramakrishna,et al.  Reduced recombination and enhanced UV-assisted photocatalysis by highly anisotropic titanates from electrospun TiO2–SiO2 nanostructures , 2014 .

[12]  Yang-Fan Xu,et al.  Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures , 2014, Nature Communications.

[13]  Jinli Zhang,et al.  A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications , 2014 .

[14]  Jian Shi,et al.  One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. , 2014, Chemical reviews.

[15]  Wenjie Shen,et al.  Anatase TiO2 hollow nanosheets: dual roles of F−, formation mechanism, and thermal stability , 2014 .

[16]  Xiaoping Zhou,et al.  Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries , 2014, Scientific Reports.

[17]  Xinjian Feng,et al.  Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. , 2014, Nano letters.

[18]  Hua Chun Zeng,et al.  Synthesis of complex nanomaterials via Ostwald ripening , 2014 .

[19]  M. S. Akhtar,et al.  Ti thin film towards the growth of crystalline-TiO2 nanostructures: stepped light-induced transient measurements of photocurrent and photovoltage in dye sensitized solar cell , 2014 .

[20]  Ge Wang,et al.  Alkali concentration-dependent tailoring of highly controllable titanate nanostructures: From yolk-shell, hollow 3D nanospheres to 1D nanowires , 2014 .

[21]  Yang-Fan Xu,et al.  Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells , 2014 .

[22]  Sang Jin Kim,et al.  High Efficiency Solid‐State Dye‐Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Tree‐like TiO2 Nanotubes , 2014 .

[23]  Dehong Chen,et al.  Surface-metastable phase-initiated seeding and ostwald ripening: a facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. , 2013, Angewandte Chemie.

[24]  Y. Chen-Yang,et al.  High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes , 2013 .

[25]  Lei Jiang,et al.  Electrospinning of multilevel structured functional micro-/nanofibers and their applications , 2013 .

[26]  Nicholas D. Petkovich,et al.  Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. , 2013, Chemical Society reviews.

[27]  Yang-Fan Xu,et al.  Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire arrays on FTO Glass for Dye-sensitized Solar Cells , 2013, Scientific Reports.

[28]  Bin Zhao,et al.  Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment , 2013 .

[29]  B. Su,et al.  Hierarchically Structured Porous Materials for Energy Conversion and Storage , 2012 .

[30]  Hong-Yan Chen,et al.  Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells , 2012 .

[31]  M. Wohlfahrt‐Mehrens,et al.  High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. , 2012, Chemical Society reviews.

[32]  Chan Beum Park,et al.  Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene , 2012, Advanced materials.

[33]  Hong-Yan Chen,et al.  Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells , 2012 .

[34]  A. S. Nair,et al.  Highly anisotropic titanates from electrospun TiO2–SiO2 composite nanofibers and rice grain-shaped nanostructures , 2012 .

[35]  W. Zhou,et al.  Controlled synthesis of thorny anatase TiO2 tubes for construction of Ag–AgBr/TiO2 composites as highly efficient simulated solar-light photocatalyst , 2012 .

[36]  Wei Li,et al.  Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. , 2011, Journal of the American Chemical Society.

[37]  X. Lou,et al.  Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. , 2011, ACS nano.

[38]  Jiaguo Yu,et al.  Fabrication and photovoltaic performance of hierarchically titanate tubular structures self-assembled by nanotubes and nanosheets. , 2011, Chemical communications.

[39]  Jiyan Liu,et al.  Facile synthesis of spiny mesoporous titania tubes with enhanced photocatalytic activity. , 2011, Chemical communications.

[40]  Xiao-Han Wang,et al.  Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. , 2011, Chemical Society reviews.

[41]  J. Ni,et al.  Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. , 2011, Journal of hazardous materials.

[42]  Xianzhi Fu,et al.  Composites of Titanate Nanotube and Carbon Nanotube as Photocatalyst with High Mineralization Ratio for Gas-Phase Degradation of Volatile Aromatic Pollutant , 2011 .

[43]  Tianyou Zhai,et al.  Tube-in-tube TiO₂ nanotubes with porous walls: fabrication, formation mechanism, and photocatalytic properties. , 2011, Small.

[44]  P. Vilarinho,et al.  Influence of the neutralization process on the preparation of titanate nanotubes by hydrothermal synthesis , 2011 .

[45]  R. López,et al.  Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study , 2011, Journal of Sol-Gel Science and Technology.

[46]  E. Waclawik,et al.  Implications of precursor chemistry on the alkaline hydrothermal synthesis of Titania/ Titanate nanostructures , 2010 .

[47]  Yen Wei,et al.  One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. , 2009, Small.

[48]  Jian Meng,et al.  Synthesis of Titanate-Based Nanotubes for One-Dimensionally Confined Electrical Properties , 2009 .

[49]  Susumu Yoshikawa,et al.  Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. , 2009, ACS applied materials & interfaces.

[50]  E. Aydil,et al.  Oriented single crystalline titanium dioxide nanowires , 2008, Nanotechnology.

[51]  Ki-Soo Kim,et al.  Modification of a TiO2 photoanode by using Cr-doped TiO2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell , 2008 .

[52]  John Parthenios,et al.  Chemical oxidation of multiwalled carbon nanotubes , 2008 .

[53]  Jinlong Yang,et al.  Large-scale synthesis of titanate and anatase tubular hierarchitectures. , 2007, Small.

[54]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[55]  Zhensheng Jin,et al.  TEM study on the formation mechanism of sodium titanate nanotubes , 2007 .

[56]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[57]  W. Nuansing,et al.  Structural characterization and morphology of electrospun TiO2 nanofibers , 2006 .

[58]  J. Filho,et al.  Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes , 2006 .

[59]  Xiaodong Wang,et al.  Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 , 2003 .

[60]  J. Román,et al.  Study of the thermal degradation of poly(N‐vinyl‐2‐pyrrolidone) by thermogravimetry–FTIR , 1993 .