New method for confluent singularity analysis of power series

[1]  G. Arteca,et al.  Critical parameters from power series expansions , 1987 .

[2]  Guttmann Validity of hyperscaling for the d=3 Ising model. , 1986, Physical review. B, Condensed matter.

[3]  G. Arteca,et al.  Study of eigenvalue singularities from perturbation series: Application to two‐electron atoms , 1986 .

[4]  Fernández,et al.  Method of analysis of critical-point singularities from power-series expansions. , 1986, Physical review. A, General physics.

[5]  R. Roskies Reconciliation of high-temperature series and renormalization-group results by suppressing confluent singularities , 1981 .

[6]  R. Roskies Hyperscaling in the Ising model on the simple cubic lattice , 1981 .

[7]  J. Zinn-Justin Analysis of high temperature series of the spin S Ising model on the body-centred cubic lattice , 1981 .

[8]  B. Nickel Hyperscaling and universality in 3 dimensions , 1981 .

[9]  Jean Zinn-Justin,et al.  Critical exponents from field theory , 1980 .

[10]  J. Zinn-Justin,et al.  Analysis of ising model critical exponents from high temperature series expansion , 1979 .

[11]  D. Meiron,et al.  Critical Indices from Perturbation Analysis of the Callan-Symanzik Equation , 1978 .

[12]  Jean Zinn-Justin,et al.  Critical Exponents for the N Vector Model in Three-Dimensions from Field Theory , 1977 .

[13]  George A. Baker,et al.  Analysis of hyperscaling in the Ising model by the high-temperature series method , 1977 .

[14]  W. J. Camp,et al.  High-temperature series for the susceptibility of the spin-s Ising model: analysis of confluent singularities , 1975 .

[15]  F. Wegner Corrections to scaling laws , 1972 .

[16]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .