Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids
暂无分享,去创建一个
[1] J. Chemin,et al. Équations d'ondes quasilinéaires et estimations de Strichartz , 1999 .
[2] Alberto Valli,et al. Navier-stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case , 1986 .
[3] David Hoff,et al. Global Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data , 1995 .
[4] D. Bresch,et al. Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model , 2003 .
[5] Raphaël Danchin,et al. Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .
[6] R. Danchin,et al. Fourier Analysis Methods for PDE's , 2005 .
[7] J. Lions,et al. Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible , 1986 .
[8] J. Chemin,et al. Théorèmes d’unicité pour le système de navier-stokes tridimensionnel , 1999 .
[9] H. Abidi. Equation de Navier-Stokes avec densité et viscosité variables dans l'espace critique , 2007 .
[10] Yves Meyer,et al. Wavelets, Paraproducts, and Navier-Stokes Equations , 1996 .
[11] D. Hoff. Uniqueness of Weak Solutions of the Navier-Stokes Equations of Multidimensional, Compressible Flow , 2006, SIAM J. Math. Anal..
[12] D. Bresch,et al. Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique , 2002 .
[13] Raphaël Danchin,et al. A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .
[14] Alan Solomon,et al. The initial-value problem for the equation (_{})_{}=ₓₓ , 1970 .
[15] Winfried Sickel,et al. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.
[16] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[17] David Hoff,et al. Discontinuous Solutions of the Navier-Stokes Equations for Multidimensional Flows of Heat-Conducting Fluids , 1997 .
[18] R. Danchin. Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density , 2007 .
[19] Pierre-Louis Lions,et al. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .
[20] David Hoff,et al. Compressible Flow in a Half-Space with Navier Boundary Conditions , 2005 .
[21] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[22] V. A. Solonnikov,et al. Estimates for solutions of nonstationary Navier-Stokes equations , 1977 .
[23] Kevin Zumbrun,et al. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow , 1995 .
[24] B. Haspot. Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces , 2011 .
[25] David Hoff,et al. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data , 1987 .
[26] David Hoff,et al. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data , 1995 .
[27] J. Nash,et al. Le problème de Cauchy pour les équations différentielles d'un fluide général , 1962 .
[28] N. Lerner,et al. Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .
[29] Qionglei Chen,et al. Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity , 2009, 0907.4540.
[30] Takaaki Nishida,et al. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids , 1983 .
[31] B. Haspot. Local well-posedness results for density-dependent incompressible fluids , 2009, 0902.1982.
[33] Takaaki Nishida,et al. The Initial Value Problem for the Equations of Motion of compressible Viscous and Heat-conductive Fluids. , 1979 .
[34] B. Haspot. Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity , 2012 .
[35] R. Danchin. Global Existence in Critical Spaces¶for Flows of Compressible¶Viscous and Heat-Conductive Gases , 2001 .
[36] Monique Dauge,et al. Koiter Estimate Revisited , 2010 .
[37] Raphaël Danchin,et al. On the uniqueness in critical spaces for compressible Navier-Stokes equations , 2005 .
[38] V. V. Shelukhin,et al. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas: PMM vol. 41, n≗ 2, 1977, pp. 282–291 , 1977 .
[39] B. Haspot. Cauchy problem for viscous shallow water equations with a term of capillarity , 2008, 0803.1939.
[40] Gui-Qiang G. Chen,et al. Vanishing viscosity limit of the Navier‐Stokes equations to the euler equations for compressible fluid flow , 2009, 0910.2360.
[41] David Hoff,et al. Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions , 2002 .
[42] David Hoff,et al. Lagrangean Structure and Propagation of Singularities in Multidimensional Compressible Flow , 2008 .
[43] H. Abidi,et al. Existence globale pour un fluide inhomogène , 2007 .
[44] R. Danchin. LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .
[45] Takaaki Nishida,et al. The initial value problem for the equations of motion of viscous and heat-conductive gases , 1980 .
[46] D. Hoff. Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions , 2001 .
[47] P. Lions. Mathematical topics in fluid mechanics , 1996 .