Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids

This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≧ 2. We address the question of the global existence of strong solutions for initial data close to a constant state having critical Besov regularity. First, this article shows the recent results of Charve and Danchin (Arch Ration Mech Anal 198(1):233–271, 2010) and Chen et al. (Commun Pure Appl Math 63:1173–1224, 2010) with a new proof. Our result relies on a new a priori estimate for the velocity that we derive via the intermediary of the effective velocity, which allows us to cancel out the coupling between the density and the velocity as in Haspot (Well-posedness in critical spaces for barotropic viscous fluids, 2009). Second, we improve the results of Charve and Danchin (2010) and Chen et al. (2010) by adding as in Charve and Danchin (2010) some regularity on the initial data in low frequencies. In this case we obtain global strong solutions for a class of large initial data which rely on the results of Hoff (Arch Rational Mech Anal 139:303–354, 1997), Hoff (Commun Pure Appl Math 55(11):1365–1407, 2002), and Hoff (J Math Fluid Mech 7(3):315–338, 2005) and those of Charve and Danchin (2010) and Chen et al. (2010). We conclude by generalizing these results for general viscosity coefficients.

[1]  J. Chemin,et al.  Équations d'ondes quasilinéaires et estimations de Strichartz , 1999 .

[2]  Alberto Valli,et al.  Navier-stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case , 1986 .

[3]  David Hoff,et al.  Global Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data , 1995 .

[4]  D. Bresch,et al.  Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model , 2003 .

[5]  Raphaël Danchin,et al.  Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .

[6]  R. Danchin,et al.  Fourier Analysis Methods for PDE's , 2005 .

[7]  J. Lions,et al.  Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible , 1986 .

[8]  J. Chemin,et al.  Théorèmes d’unicité pour le système de navier-stokes tridimensionnel , 1999 .

[9]  H. Abidi Equation de Navier-Stokes avec densité et viscosité variables dans l'espace critique , 2007 .

[10]  Yves Meyer,et al.  Wavelets, Paraproducts, and Navier-Stokes Equations , 1996 .

[11]  D. Hoff Uniqueness of Weak Solutions of the Navier-Stokes Equations of Multidimensional, Compressible Flow , 2006, SIAM J. Math. Anal..

[12]  D. Bresch,et al.  Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique , 2002 .

[13]  Raphaël Danchin,et al.  A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .

[14]  Alan Solomon,et al.  The initial-value problem for the equation (_{})_{}=ₓₓ , 1970 .

[15]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[16]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[17]  David Hoff,et al.  Discontinuous Solutions of the Navier-Stokes Equations for Multidimensional Flows of Heat-Conducting Fluids , 1997 .

[18]  R. Danchin Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density , 2007 .

[19]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[20]  David Hoff,et al.  Compressible Flow in a Half-Space with Navier Boundary Conditions , 2005 .

[21]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[22]  V. A. Solonnikov,et al.  Estimates for solutions of nonstationary Navier-Stokes equations , 1977 .

[23]  Kevin Zumbrun,et al.  Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow , 1995 .

[24]  B. Haspot Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces , 2011 .

[25]  David Hoff,et al.  Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data , 1987 .

[26]  David Hoff,et al.  Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data , 1995 .

[27]  J. Nash,et al.  Le problème de Cauchy pour les équations différentielles d'un fluide général , 1962 .

[28]  N. Lerner,et al.  Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .

[29]  Qionglei Chen,et al.  Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity , 2009, 0907.4540.

[30]  Takaaki Nishida,et al.  Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids , 1983 .

[31]  B. Haspot Local well-posedness results for density-dependent incompressible fluids , 2009, 0902.1982.

[32]  The equation of potential flows of a compressible viscous fluid at small reynolds numbers: Existence, uniqueness, and stabilization of solutions , 1993 .

[33]  Takaaki Nishida,et al.  The Initial Value Problem for the Equations of Motion of compressible Viscous and Heat-conductive Fluids. , 1979 .

[34]  B. Haspot Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity , 2012 .

[35]  R. Danchin Global Existence in Critical Spaces¶for Flows of Compressible¶Viscous and Heat-Conductive Gases , 2001 .

[36]  Monique Dauge,et al.  Koiter Estimate Revisited , 2010 .

[37]  Raphaël Danchin,et al.  On the uniqueness in critical spaces for compressible Navier-Stokes equations , 2005 .

[38]  V. V. Shelukhin,et al.  Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas: PMM vol. 41, n≗ 2, 1977, pp. 282–291 , 1977 .

[39]  B. Haspot Cauchy problem for viscous shallow water equations with a term of capillarity , 2008, 0803.1939.

[40]  Gui-Qiang G. Chen,et al.  Vanishing viscosity limit of the Navier‐Stokes equations to the euler equations for compressible fluid flow , 2009, 0910.2360.

[41]  David Hoff,et al.  Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions , 2002 .

[42]  David Hoff,et al.  Lagrangean Structure and Propagation of Singularities in Multidimensional Compressible Flow , 2008 .

[43]  H. Abidi,et al.  Existence globale pour un fluide inhomogène , 2007 .

[44]  R. Danchin LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .

[45]  Takaaki Nishida,et al.  The initial value problem for the equations of motion of viscous and heat-conductive gases , 1980 .

[46]  D. Hoff Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions , 2001 .

[47]  P. Lions Mathematical topics in fluid mechanics , 1996 .